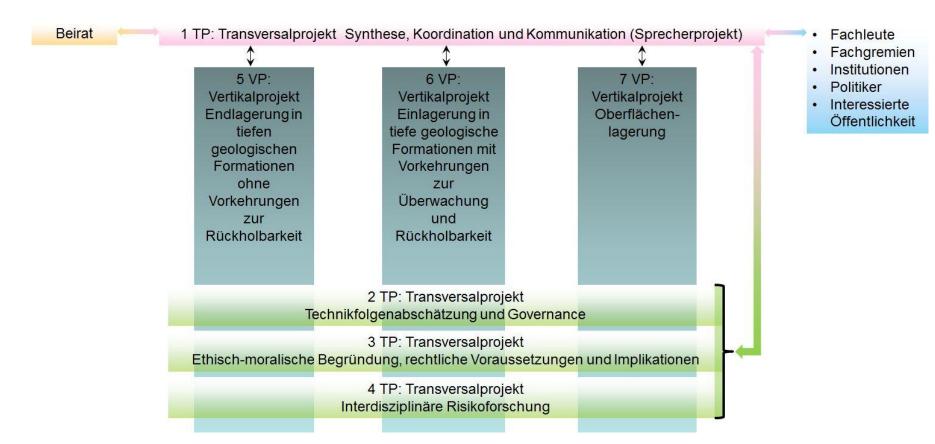


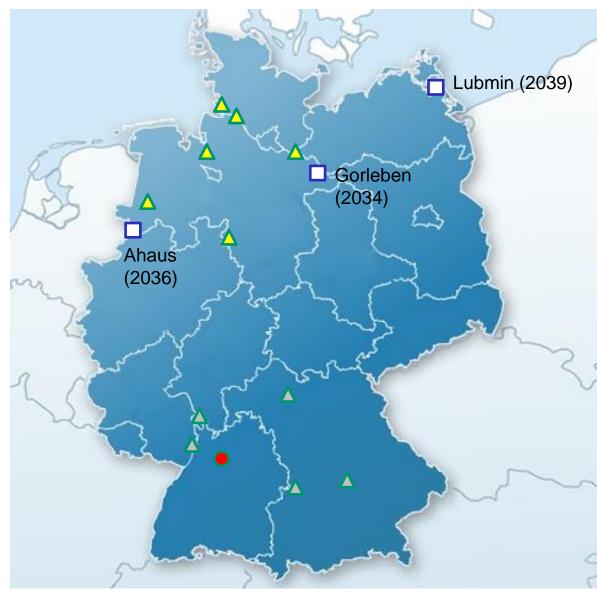
EXAMPLE 1 EXAMPLE 1 EXAMP


Technical concepts for storing HLW - Monitoring, renewal and refurbishment of storage facilitites

Dipl.-Ing. Dennis Köhnke Dipl.-Ing. Manuel Reichardt Institute for Building Materials, Concrete Construction and Fire Protection Technische Universität Braunschweig

19th REFORM Group Meeting, Salzburg, 2. September 2014

Organisation within ENTRIA



- WP 7.1: Civil Engineering Concepts
- WP 7.2: Probabilistic, monitoring-based Safety- and Life-Cycle-Concept
- WP 7.3: Requirements due to Methods of Waste Treatment

Interim storage in Germany

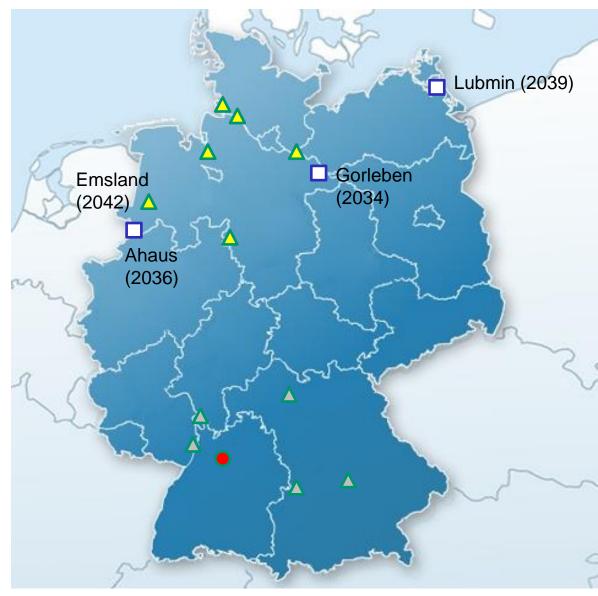
Since 1960's:

Disposal in deep geological formations planned as the final step of radioactive waste management

Site Selection Law (2013):

Site selection for the future repository for heat-generating radioactive waste should be finished by 2031.

Example for the **timespan** between site selection and start-up: **Repository** for not heat-generating radioactive waste **"Schacht Konrad"**: Start of the licensing procedures in 1982. Estimated beginning of disposal in 2022.


Centralized storage facility Decentralized storage facility: WTI-Concept STEAG-Concept Tunnel-Concept

ENTRIA

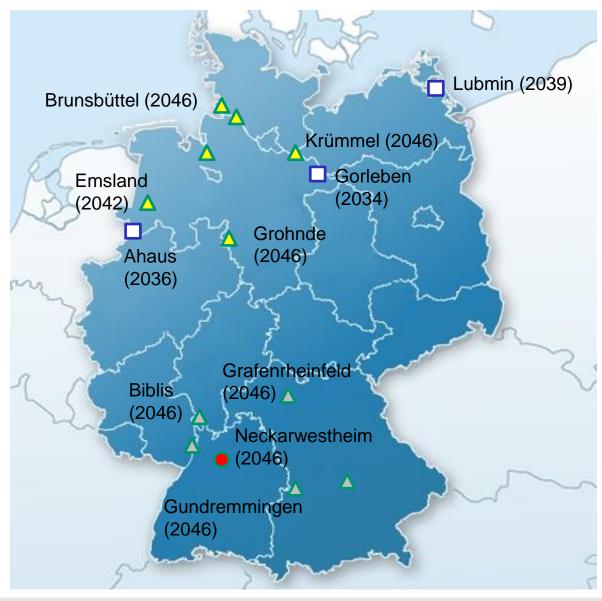
Interim storage in Germany

Since 1960's:

Disposal in deep geological formations planned as the final step of radioactive waste management

Site Selection Law (2013):

Site selection for the future repository for heat-generating radioactive waste should be finished by 2031.


Example for the **timespan** between site selection and start-up: **Repository** for not heat-generating radioactive waste **"Schacht Konrad"**: Start of the licensing procedures in 1982. Estimated beginning of disposal in 2022.

Centralized storage facility Decentralized storage facility: WTI-Concept STEAG-Concept Tunnel-Concept

Interim storage in Germany

Since 1960's:

Disposal in deep geological formations planned as the final step of radioactive waste management

Site Selection Law (2013):

Site selection for the future repository for heat-generating radioactive waste should be finished by 2031.


Example for the **timespan** between site selection and start-up: **Repository** for not heat-generating radioactive waste **"Schacht Konrad"**: Start of the licensing procedures in 1982. Estimated beginning of disposal in 2022.

Centralized storage facility Decentralized storage facility: WTI-Concept STEAG-Concept Tunnel-Concept

Interim storage in Germany

Since 1960's:

Disposal in deep geological formations planned as the final step of radioactive waste management

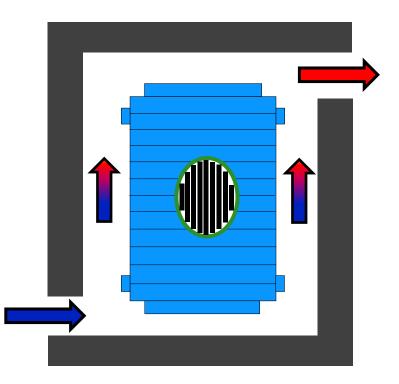
Site Selection Law (2013):

Site selection for the future repository for heat-generating radioactive waste should be finished by 2031.

Example for the **timespan** between site selection and start-up: **Repository** for not heat-generating radioactive waste **"Schacht Konrad"**: Start of the licensing procedures in 1982. Estimated beginning of disposal in 2022.

Centralized storage facility Decentralized storage facility: WTI-Concept STEAG-Concept Tunnel-Concept

ENTRIA

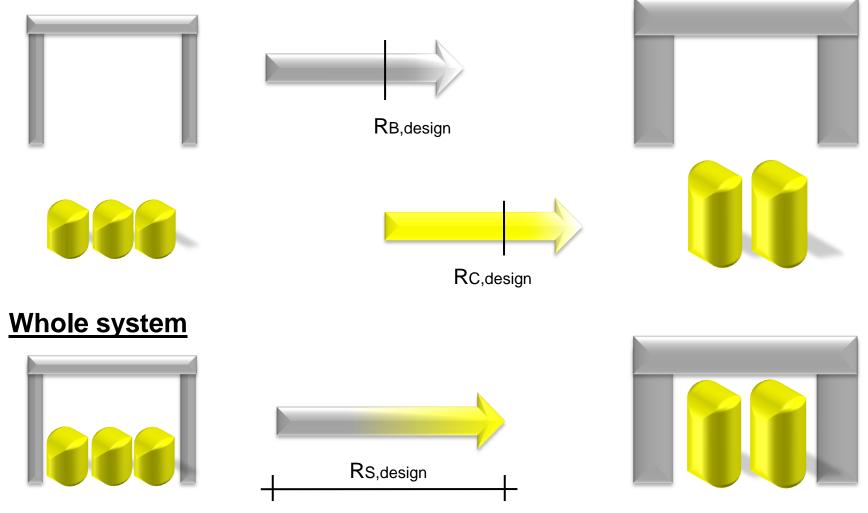


IAEA Safety Standards [SF-1]:

"The **fundamental safety objective** is to protect people and the environment from harmful effects of ionizing radiation"

Ensured by:

- Radiaton shielding
- Safe enclosure
- Removal of decay heat
- Subcriticality



Resistance of storage facilities

Individual components (Building/Cask)

General storage concepts – Part 1

Referring to [1], [2]

Туре	Option	Examples				
Independent Spent Fuel Storage Pool (Wet Storage of Spent Fuel)	Water in a deep stainless steel lined concrete pool within an enclosed structure	Most ARs + many AFRs worldwide				
Vertical Dual-Purpose Spent Fuel Dry Storage/Transfer Cask	Heavily shielded steel cask with spent fuel sealed in inner steel canister (i.e. double-lidded)	CASTOR, TN, NAC- ST/STC, BGN Solutions				
Concrete Dry Storage Vault with Thimble Tube Storage Wells	Heavily shielded concrete vault with thimble tube storage wells for spent fuel	MVDS, MACSTOR, HABOG				

Centralized **wet** storage facility (Oskarshamm, S) [3]

Decentralized storage facility for **dual** -purpose casks (Krümmel, D) [4] Centralized **vault** storage facility HABOG (Vlissingen, NL)

General storage concepts - Part 2

Referring to [1], [2]

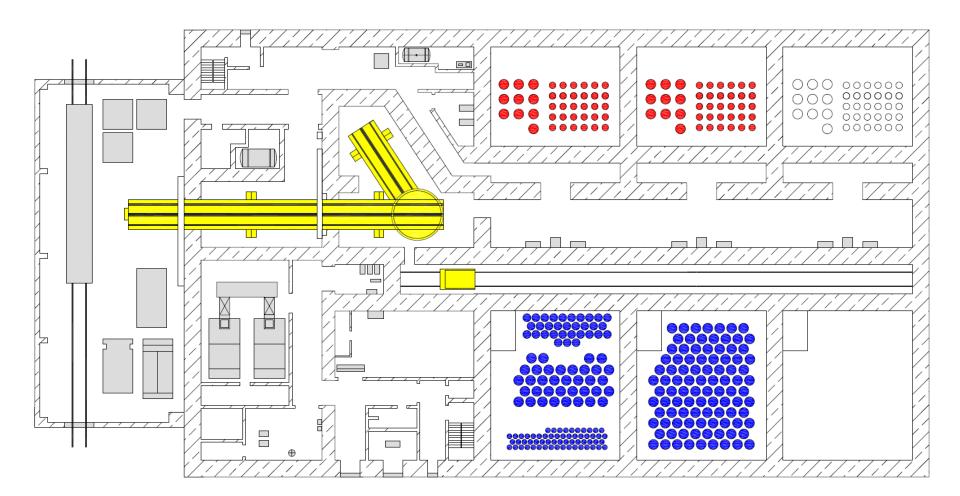
Туре	Option	Examples
Vertical Concrete Dry Spent Fuel Storage Cask/Silo	Heavily shielded concrete cask/silo with spent fuel sealed in an inner steel canister	CONSTOR, HI-STORM
Horizontal Modular Concrete Dry Spent Fuel Storage	Heavily shielded modular concrete storage with spent fuel sealed in an inner steel canister	NUHOMS, NAC- MPC/UMS, MAGNASTOR
Dry Geologic Storage (Tunnel or Mine)	Dry gas-filled spent fuel canisters emplaced in an isolated deep tunnel or mine and backfilled with earth	

HI-STORM Vertical storage cask [5]

NUHOMS Horizontal storage module [6]

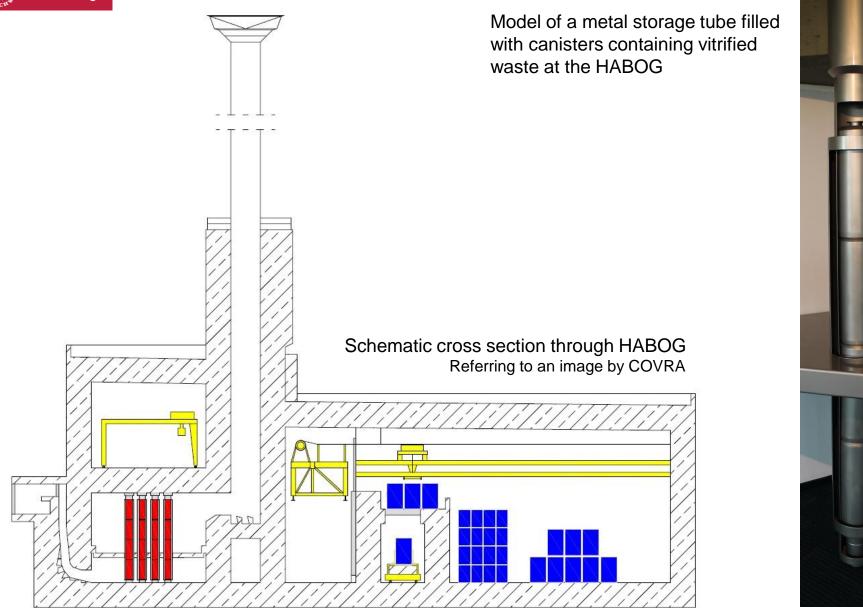
Dennis Köhnke, Manuel Reichardt: Technical concepts for storing HLW – Monitoring, renewal and refurbishment of storage facilities 02.09.2014

HABOG at Vlissingen, NL


COVRA: Centrale Organisatie voor Radioactief Afval (Central Organisation for Radioactive Waste) HABOG: Hoogradioactief Afval Behandeling- en Opslag Gebouw (High Level Waste Treatment and Storage Building)

Design of the HABOG at Vlissingen, NL

Storage of heat-generating/not heat-generating high level waste in different storage modules



12

Design of the HABOG at Vlissingen, NL

Dennis Köhnke, Manuel Reichardt: Technical concepts for storing HLW – Monitoring, renewal and refurbishment of storage facilities 02.09.2014

Impressions of the HABOG at Vlissingen, NL

Reception Area

Hot Cell

Storage module for heatgenerating high level waste

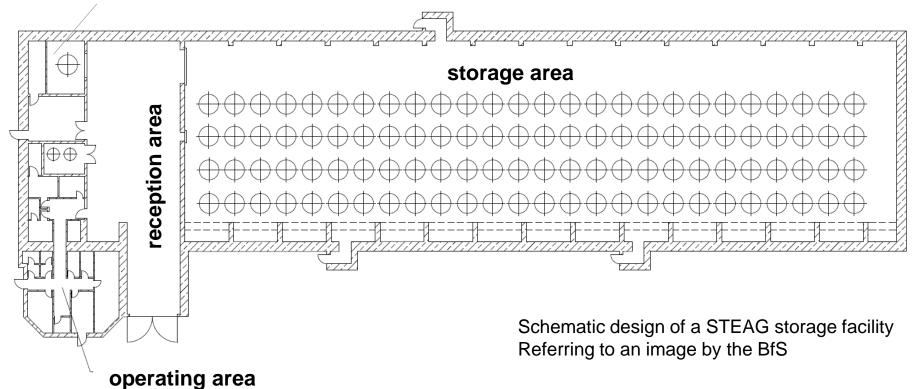
Heavy shielding door

Dennis Köhnke, Manuel Reichardt: Technical concepts for storing HLW – Monitoring, renewal and refurbishment of storage facilities 02.09.2014

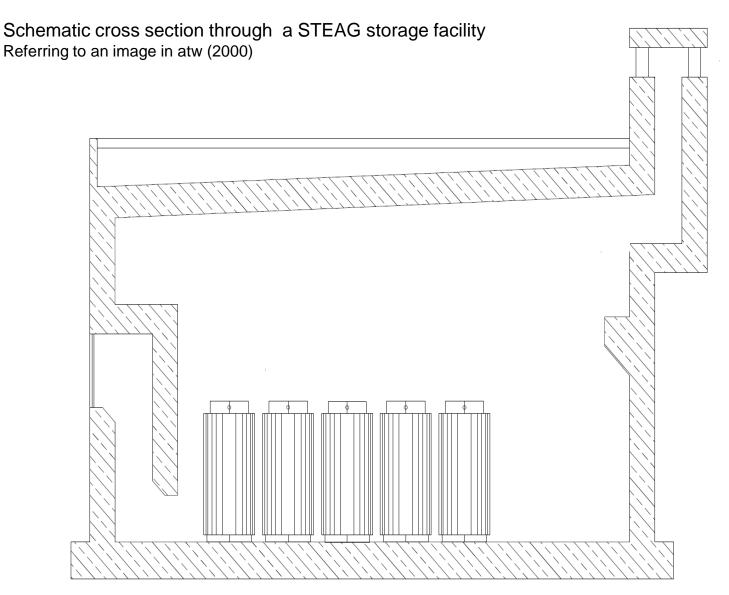
STEAG-Concept at Krümmel, Germany

Operator: Vattenfall

[4]


Construction: STEAG (Steinkohlen-Elektrizitäts-AG)

Schematic design of a STEAG storage facility


maintenance room

Schematic design of a STEAG storage facility

Impressions of the STEAG-facility at Krümmel

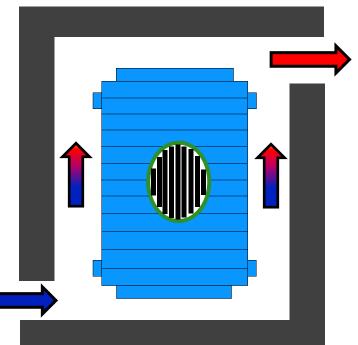
Reception area

Heavy shielding door

Storage area

Maintenance room

Dennis Köhnke, Manuel Reichardt: Technical concepts for storing HLW – Monitoring, renewal and refurbishment of storage facilities 02.09.2014



Safety objectives in general:

- Radiaton shielding
- Safe enclosure
- Removal of decay heat
- Subcriticality

Specified in (inter-)national guidelines, e.g.:

- IAEA-TECDOC-1558 Selection of Away-From-Reactor Facilities for Spent Fuel Storage - A Guidebook
- ESK (D) Guidelines for dry cask storage of spent fuel and heat-generating waste
- ENSI-G04/d (CH) Design and operation of storage facilities for radioactive waste and spent fuel

IAEA-TECDOC-1558 - A Guidebook [1]

PROJECT NEEDS AND SELECTION CRITERIA FOR AFR STORAGE

ENTRIA

IAEA-TECDOC-1558 - Safety and licensing [1]

Structural performance

- Ability to withstand loads and to last for the required period
- Compatible with site and environmental conditions
- Ability to withstand accident conditions
- Potential for massive collapse of structures and their impact on safety should be known

Heat removal

- Temperature limits should be established
- Adequate heat removal required

Subcriticality

- Inadvertent criticality should not be possible
- Neutron absorbing material if used should last for the life of the facility
- All credible situations affecting criticality safety should be reviewed.
 Shielding
- Adequate shielding
- Appropriate measures to prevent loss of shielding
- Storage should maintain its shielding for all fuel handling activities
- Occupational and off-site doses should be acceptable

IAEA-TECDOC-1558 - Safety and licensing [1]

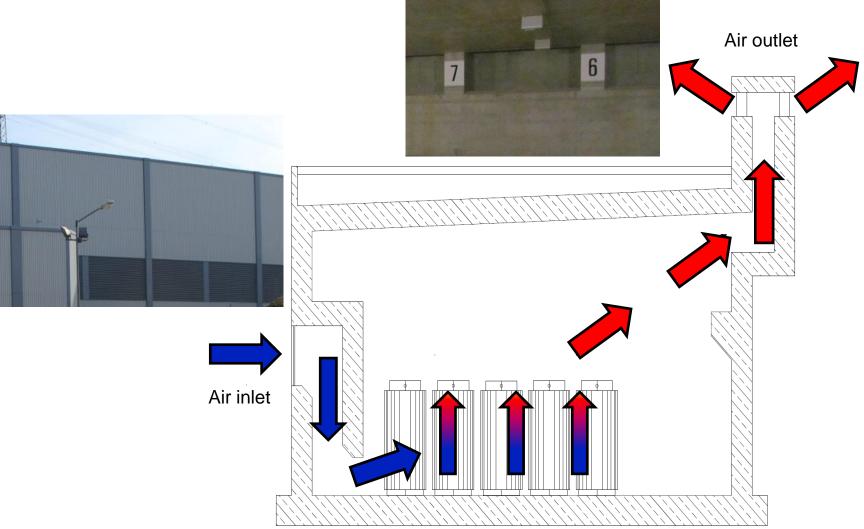
Structural performance

- Ability to withstand loads and to last for the required period
- Compatible with site and environmental conditions
- Ability to withstand accident conditions
- Potential for massive collapse of structures and their impact on safety should be known

Heat removal

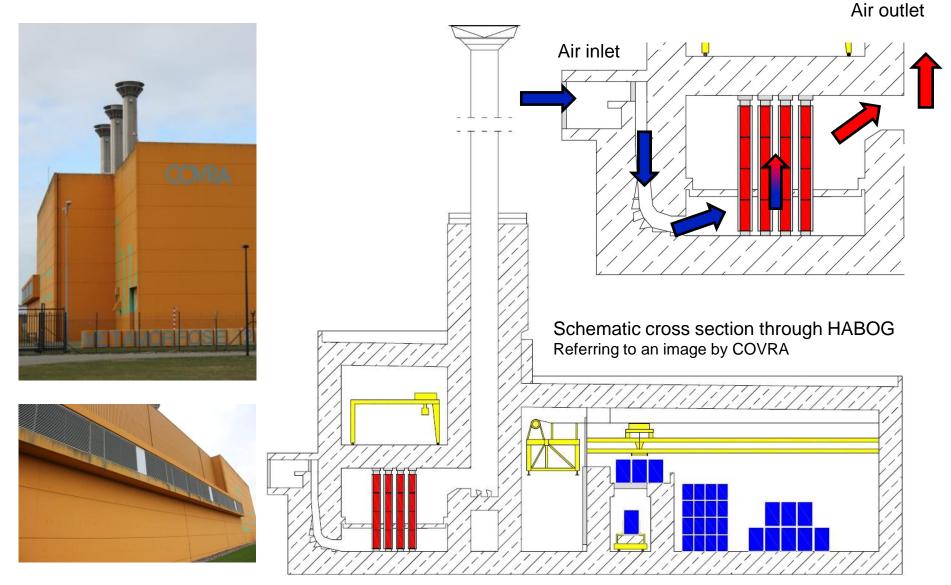
- Temperature limits should be established
- Adequate heat removal required

Subcriticality


- Inadvertent criticality should not be possible
- Neutron absorbing material if used should last for the life of the facility
- All credible situations affecting criticality safety should be reviewed.
 Shielding
- Adequate shielding
- Appropriate measures to prevent loss of shielding
- Storage should maintain its shielding for all fuel handling activities
- Occupational and off-site doses should be acceptable

22

How are the safety objectives realized? Heat removal



Schematic cross section through a STEAG storage facility Referring to an image in atw (2000)

How are the safety objectives realized? Heat removal

IAEA-TECDOC-1558 - Safety and licensing [1]

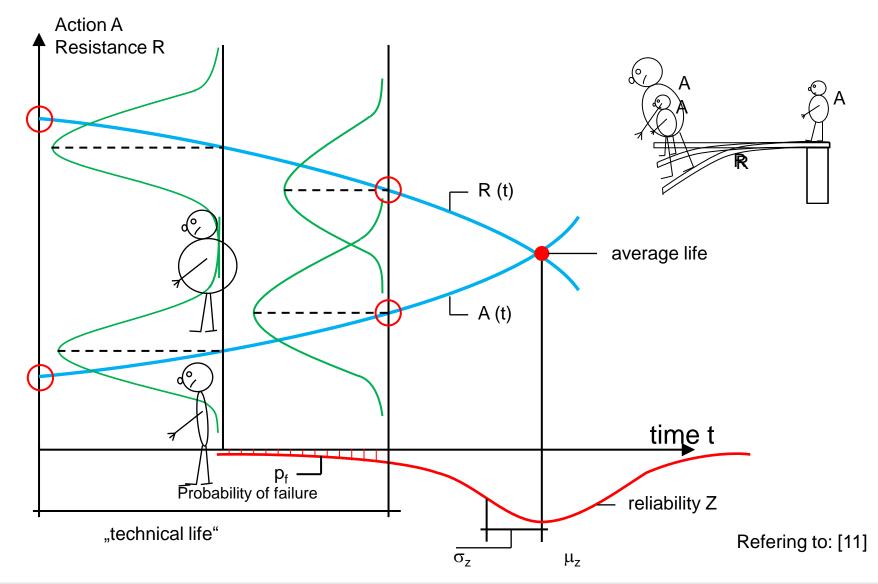
Structural performance

- Ability to withstand loads and to last for the required period
- Compatible with site and environmental conditions
- Ability to withstand accident conditions
- Potential for massive collapse of structures and their impact on safety should be known

Heat removal

- Temperature limits should be established
- Adequate heat removal required

Subcriticality


- Inadvertent criticality should not be possible
- Neutron absorbing material if used should last for the life of the facility
- All credible situations affecting criticality safety should be reviewed. **Shielding**
- Adequate shielding
- Appropriate measures to prevent loss of shielding
- Storage should maintain its shielding for all fuel handling activities
- Occupational and off-site doses should be acceptable

25

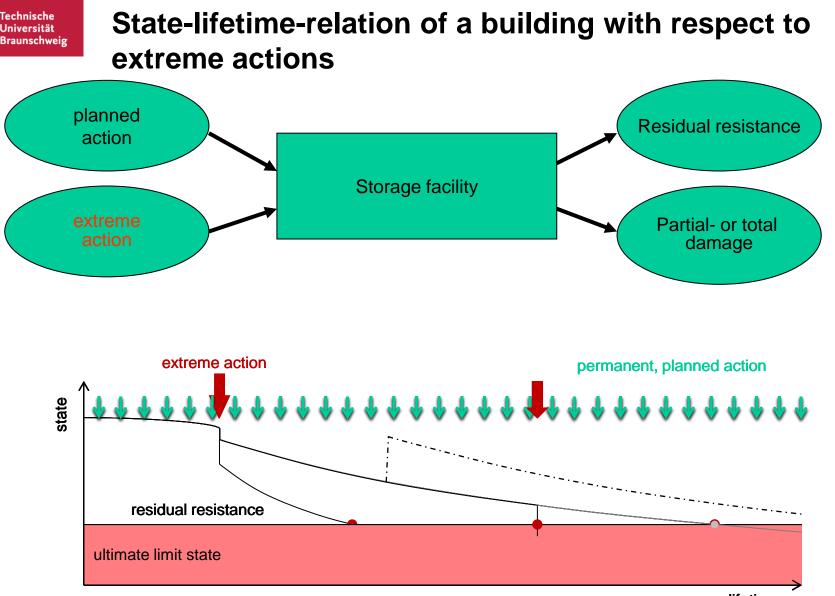
Structural performance - Action and resistance

Dennis Köhnke, Manuel Reichardt: Technical concepts for storing HLW – Monitoring, renewal and refurbishment of storage facilities 02.09.2014

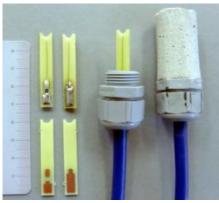
Scattering of material (concrete) parameters

Inside concrete by Micro-CT

Why does the resistance of a structure decrease?


Several parameters related to:

- material
- structural details or design
- workmanship
- internal stresses
- external stresses
- in-service stresses
- level of maintenance. [10]

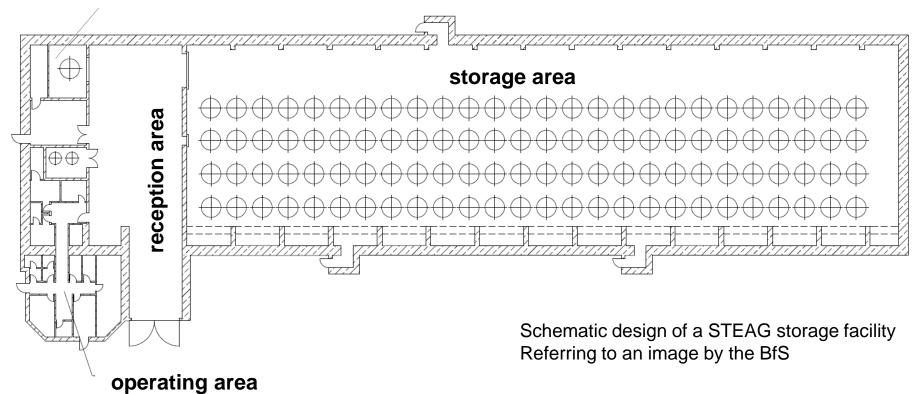


29

Monitoring methods

ENTRIA

Evaluation Method* Concrete Property or Characteristic	Air Permeability (S)	Audio Methods (N)	Break-off Methods (S)	Carbonation Depth (D)	Chloride Testing (S)	Core Testing (D)	Infrared Thermography (N)	Instrumentation (N)	Magnetic Methods (N)	Modal Analysis (N)	Petrographic Methods (D)	Probe Penetration (S)	Pullout Testing (S)	Radar (N)	Radiation/nuclear (N)	Rebound Hammer (N)	Stress Wave Transmission (N)	Tomography (N)	Ultrasonic Pulse Velocity (N)	Visual Inspection (N)
Alkali-Carbonate Reaction											Х									
Air Content	Х										Х									
Acidity				Х	Х															
Alkali-Silica Reaction											Х									
Bleeding Channels											Х									X
Cement Content											Х								-	
Chemical Composition						_					х									X
Chloride Content	Η			-	x	х					\neg		-	-						<u> </u>
Compressive Strength			х			X	- 1					х	x		-	x			x	
Concrete Cover					\neg	X			x				-	х			H			
Aggregate Content			_				-				х		_							
Mixing Water Content										-	х		-	-						-
Corrosive Environment	x	-		x	x		-	-			-				-	\vdash				x
Cracking	Â	x	-	-		x	-	х		-	х		-	-	x	-	x	x	x	x
Creep	Н	^	-	-	-	x		X	\square		-		-	-	-		-		-	
Delamination		х		-		x	х	-			х				x		x	x	x	x
Density	H	~		-		X	-								x		^		-	-
Elongation	Н		-	-	-	x		x			-	-	-	-	~		H			
Embedded Parts				-	_	^		~			-	-+	-	х	x			x		-
Frost Damage			-	-	\dashv			-			x	\neg	-	~			-		-	<u> </u>
Honeycomb			-		-	х					X	-	-		x	Η	\square	x	x	x
Modulus of Elasticity				-	\neg	X								-	~				x	1 ~
Modulus of Rupture	\square			-	-	Â	\neg									-	-			-
Moisture Content			-	-	-1	x			\square	\neg	x	-	-							<u> </u>
Structural Performance	Η	x	-		-	^	-	x		x		-+	-	-	-	_				x
Permeability	x	~	-	-	-					-	х	-		-			-			
Pullout Strength	^		-					Η	\neg				x				-			t—
Aggregate Quality		-	-	-	-	-	-			-	x	-	-	-		\vdash	\vdash			x
Freeze/Thaw Resistance		-	\dashv	+	\neg	-		-		\neg	x	+	-		-	\vdash	\square		-	r^
Soundness	\vdash			-	_	x	-			-	~	-	-		x	\vdash	\vdash	x		
Splitting-Tensile Strength		\dashv		-	-	Â	-	-				\neg			~		\vdash	-		\vdash
Sulfate Resistance		-		-	-	^	_	-			x	_					\vdash		-	
	\vdash	-	\mathbf{x}	_	-	x			\vdash		^									-
Tensile Strength	\vdash	-	4	-	-	Ŷ	-	-	Η		x	-		-		x	\vdash			v
Concrete Uniformity	\vdash	-	-	-	\neg	v			\square		4			х	x	^	x	v		X X
Voids	\vdash	\dashv	\dashv	_	_	х						\neg	_	^	^		X	x	X	<u>^</u>
Water-Cement Ratio											х									


 $\begin{bmatrix} Source: 12 \end{bmatrix} (N) = nondestructive method, (S) = semidestructive method, and (D) = destructive method. \end{bmatrix}$

Monitoring and refurbishment in the storage area?

maintenance room

31

Thank you for your attention!

www.entria.de

Project number 02S9082A

Federal Ministry of Education and Research

SPONSORED BY THE

References

- [1] International Atomic Energy Agency: IAEA-TecDoc-1558: Selection of Away-From-Reactor Facilities for Spent Fuel Storage - A Guidebook, September 2007
- [2] National Nuclear Security Administration, Office of Nonproliferation and International Security (NIS): Next Generation Safeguards Initiative. Safeguards-By-Design Facility Guidance Series (NGSI-SBD-001). Guidance for Independent Spent Fuel Dry Storage Installations. May 2012
- [3] http://www.holtecinternational.com/productsandservices/wasteandfuelmanagement/hi-storm/
- [4] http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=NP-6940 %20%20%20%20%20%20%20%20%20%20%20%20%20&Mode=download
- [5] http://reg.gsapubs.org/content/19/73/F5.large.jpg
- [6] Photograph by Vattenfall
- [7] Complementary Safety margin Assessment COVRA N.V. (HABOG)
- [8] Statement of the Nuclear Waste Management Commission (ESK)
 - ESK stress test for nuclear fuel cycle facilities in Germany. Part 1: Nuclear fuel supply facilities, storage facilities for spent fuel and heat-generating radioactive waste, facilities for the treatment of spent fuel
- [9] http://www.ingenieur.de/Branchen/Bauwirtschaft/Deutscher-Beton-fuer-World-Trade-Center-in-New-Yorkhaelt-Bomben-stand
- [10] Service life management system of concrete structures in nuclear power plants Erkki Vesikari ESPOO 2007 VTT Publications 648
- [11] Gehlen, Christoph: Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken Zuverlässigkeitsbetrachtungen zur wirksamen Vermeidung von Bewehrungskorrosion, DAfStb (2000), Heft 510.
- [12] Assessment and management of ageing of major nuclear power plant components important to safety: Concrete containment buildings - IAEA-TECDOC-1025, Vienna, 1998

