

CUBAN ENERGY REVOLUTION AND FUTURE ROLE OF RENEWABLE ENERGY

REFORM Group Meeting Salzburg 2015

Jyrki Luukkanen Research Director Finland Futures Research Centre University of Turku jyrki.luukkanen@utu.fi

Turun yliopisto University of Turku

Contents

- Cuban development and energy use
- Cuban energy revolution
- Drivers of CO₂ emissions
- Future energy scenarios for Cuba

Vazquez, L., Luukkanen, J., Kaisti, H., Käkönen, M. and Majanne, Y. (2015) Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability. *Renewable and Sustainable Energy Reviews* 49 (2015) 638–645. ISSN: 1364-0321

Cuban development

- Prior to the Cuban revolution in 1959, about half of the households were connected to electricity grid.
- By 1989, this number had risen to 95 per cent
- Trade with Soviet Union essential for Cuban economic development
- Collapse of Soviet Union 1991 -> Huge impact on Cuban economy

Cuban energy use

- Reduction of Soviet oil import 1991
- Import of Venezuelan oil
- Reduction in sugar production reduced biomass use (bagasse)

Cuban energy production

Cuban energy production

Cuban energy problems

- In the early-2000s Cuba's energy situation was bleak
- Cuba had centralized and inefficient power plants
- 11 thermoelectric plants that functioned about half of the time.
- Use of poor quality fuel with high content of sulphur.
- There were frequent blackouts and high transmission line losses
- In 2004 hurricanes in Cuba, a million people without electricity for 10 days
- Decision to start energy revolution

Revolución Energética Energy Revolution

- (i) Energy efficiency and conservation;
- (ii) Increasing the availability and reliability of the national grid;
- (iii) Incorporating more renewable energy technologies into its energy portfolio;
- (iv) Increasing the exploration and production of local oil and gas;
- (v) International co-operation.

Revolución Energética Energy Revolution

- Change over to energy efficient appliances.
- Households switched incandescent light bulbs to more efficient compact fluorescents free of charge.
- 2 million refrigerators and one million fans were replaced,
- 3.5 million rice cookers and
- 3 million pressure cookers were bought
- New residential electricity tariff was introduced to encourage electricity saving

Efficiency improvement

Switch from kerosene to electric cooking

FINLAND FUTURES RESEARCH CENTRE

Energy efficiency

- Reduction in LPG use
- Rice cookers
- Pressure cookers

Revolución Energética Energy Revolution

Solar development

- Solar PV development
- Two large scale solar PV plants
- 1 MW + 1 MW

Wind power capacity 12 MW in 2014

FINLAND FUTURES RESEARCH CENTRE

Revolución Energética Energy Revolution

- Not much impact on industrial energy use
- No special measures in industry

FINLAND FUTURES RESEARCH CENTRE

 Electricity is increasingly used in the residential sector

Renewable energy target

- Target of supplying 24% of electricity needs from renewables by 2030
- Plans for rapid increase in wind power and solar PV
- Bioenergy has large potential, but not much investment plans
- Energy efficiency improvements are seen as one means of reducing the demand

Decomposition of CO₂ emissions

- 1. Shift to more fossil fuel use
- 2. Decreasing transformation efficiency
- 3. Improving efficiency of economic production
- 4. Increasing GDP

Turun yliopisto University of Turku

5 Increasing population

RESEARCH CENTRE

Future scenarios for Cuba

Turun yliopisto

BAU fossil scenario

Diesel

Gasoline

BAU scenario with fossil fuel

Turun yliopisto University of Turku

Scenario with renewables and improved efficiency Similar economic development

- Lower growth in electricity demand (35 TWh instead of 40 TWh) due to improved efficiency
- Large increase in wind power and solar PV production
- Considerable increase in bioenergy production

Turun yliopisto

Renewables and energy efficiency scenario University of Turku

Conclusions

- There is considerable potential in renewable development in Cuba
- Large investments are needed with increasing energy demand in order to reduce CO₂ emissions
- Development of domestic oil and gas resources may hinder renewable development especially if import substitution or export revenues are possible

Thank you

Jyrki Luukkanen Research Director Finland Futures Research Centre University of Turku <u>www.utu.fi http://ffrc.utu.fi</u> <u>www.mekong.fi</u> jyrki.luukkanen@utu.fi

FINLAND FUTURES RESEARCH CENTRE