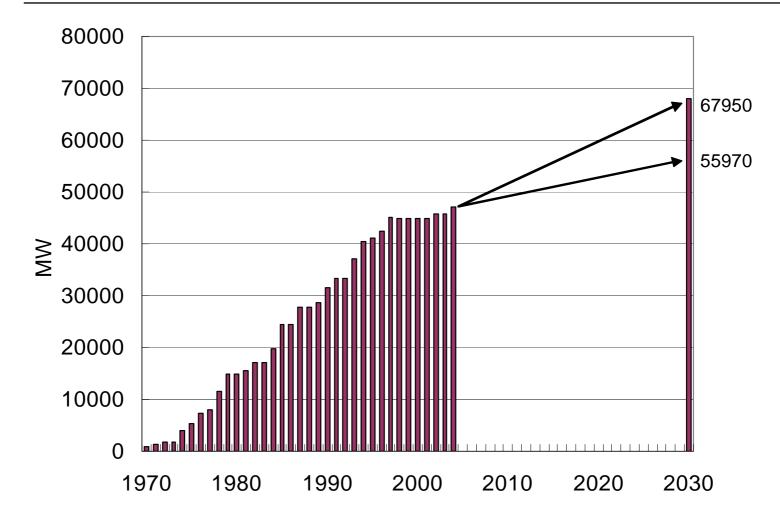
Economics of Nuclear Power: Case of Japan - update and back-end activities

Kenichi Oshima, Ph.D Ritsumeikan University, Kyoto k-oshima@cj8.so-net.ne.jp

# Outline


#### • Background

- Development of nuclear power in Japan
- Unit cost of generating electricity announced by the government
- Scope of my study: Is nuclear the cheapest?
  - Social cost
- Estimating cost of generating electricity
  - Unit cost borne by electric utilities
    - "Nuclear and pumping up hydro"
  - State aid by the government
- Economic Evaluation of reprocessing

# Electricity in Japan (2006)

|            | Capacity Generated electricity |         |       |
|------------|--------------------------------|---------|-------|
|            | MW                             | MWh     |       |
| Hydro      | 45,685                         | 89,005  | 9.1%  |
| Geothermal | 497                            | 2,878   | 0.3%  |
| Thermal    | 138,903                        | 577,570 | 59.4% |
| Nuclear    | 49,467                         | 303,426 | 31.2% |
| Wind       | 4                              | 5       | 0.0%  |
| Solar      | 0                              | 0       | 0.0%  |
| Total      | 234,556                        | 972,885 |       |

# Development of nuclear power in Japan



### Nuclear Development Strategy

- "Framework for Nuclear Energy Policy"
  - Determined in October 2005
- o "Nuclear Power Nation Plan"
  - Determined on 8 August 2006

 Under the current plans above, 30-40% of the electricity will be generated from nuclear power even after 2030.

#### Why nuclear power?

- 1. Energy security
  - Diversification of energy
  - "quasi" national energy
  - Nuclear fuel cycle depending on fuel reprocessing and fast breeders ?
- 2. GHG reduction
  - Only 7.5 % of primary energy in 2005
  - Japan's 6% reduction target is based on the expansion of nuclear power. But, it is unrealistic because of difficulties of public acceptance. In addition, there occurred an big earthquake near the largest nuclear power plants, which are expected to be stopped at least for several years, in Japan: the Kashiwazaki Kariwa Nuclear Power Plants(8271MW)
- 3. Cost economy

Is it true that nuclear power is the cheapest?

#### Question: Is nuclear power the cheapest?

- Cost analysis by the Japanese Government, the Ministry of International Trade and Industry (from 2001, METI: the Ministry of Economy, Trade and Industry).
- According to the METI, nuclear is the rational source from the economic viewpoint.
- o But, no detailed information publicized.

# Cost per unit of electricity projected by the Japanese Government

|         | yen/kWh | Cent (Euro)/kWh | Cent (\$)/kWh |
|---------|---------|-----------------|---------------|
| Hydro   | 13.6    | 8.5             | 11.3          |
| Oil     | 10.2    | 6.4             | 8.5           |
| LNG     | 6.4     | 4.0             | 5.3           |
| Coal    | 6.5     | 4.1             | 5.4           |
| Nuclear | 5.9     | 3.7             | 4.9           |
|         |         |                 |               |

USD=120 yen

Euro =160 yen

Source: Advisory Committee for Energy (1999) (in Japanese)

### Assumptions (1) (METI)

|         | Capacity | Years in operation | Capacity<br>factor |
|---------|----------|--------------------|--------------------|
| Hydro   | 15 MW    | 40                 | 45%                |
| Oil     | 400MW    | 40                 | 80%                |
| LNG     | 1500MW   | 40                 | 80%                |
| Coal    | 900MW    | 40                 | 80%                |
| Nuclear | 1300MW   | 40                 | 80%                |

### Assumptions (2) (METI) Fuel price

- Fossil fuel: price will rise for 40 years at the following annual rate respectively.
  - Oil 3.36%, LNG 1.82%, Coal 0.88%
- Nuclear fuel: price will remain at the latest average price for 40 years.
  - Detailed data has not been disclosed.
  - But, why only the cost of nuclear fuel can be stable for 40 years??

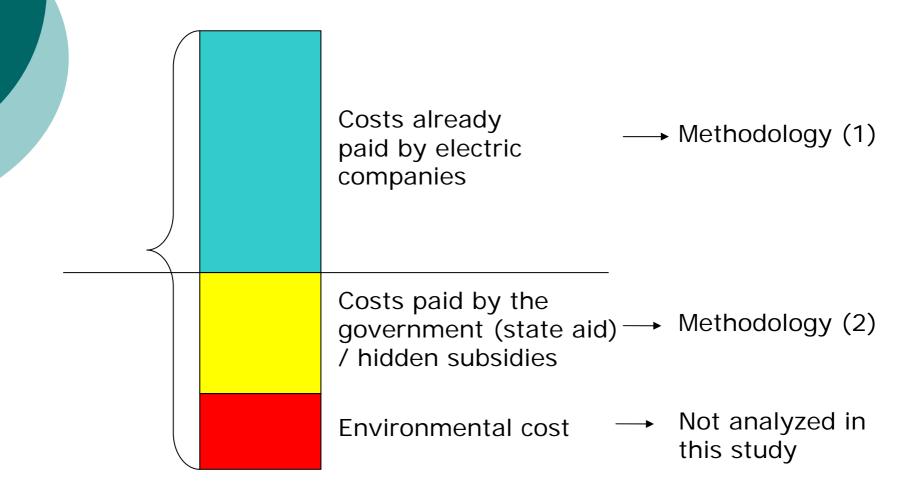
# Cost per unit of electricity projected by the Japanese Nuclear Industry

|         | yen/kWh | Cent (Euro)/kWh | Cent (\$)/kWh |
|---------|---------|-----------------|---------------|
| Hydro   | 11.9    | 7.4             | 9.9           |
| Oil     | 10.7    | 6.7             | 8.9           |
| LNG     | 6.2     | 3.9             | 5.2           |
| Coal    | 5.7     | 3.6             | 4.8           |
| Nuclear | 5.3     | 3.3             | 4.4           |

USD=120 yen

Euro =160 yen

Source: Nihon Genshiryoku Sangyokaigi (2005), Genshiryoku Poket book (in Japanese)


# Cost per unit of electricity projected by the Japanese Nuclear Industry

|            | Capacity factor |      | D    | iscount ra | te   |      |
|------------|-----------------|------|------|------------|------|------|
|            | Capacity factor | 0%   | 1%   | 2%         | 3%   | 4%   |
| Hydro      | 45%             | 8.2  | 9.3  | 10.6       | 11.9 | 13.3 |
| Oil fired  | 30%             | 14.4 | 15.0 | 15.7       | 16.5 | 17.3 |
|            | 70%             | 10.4 | 10.6 | 10.9       | 11.2 | 11.6 |
|            | 80%             | 10.0 | 10.2 | 10.5       | 10.7 | 11.0 |
| LNG fired  | 60%             | 6.2  | 6.4  | 6.6        | 6.8  | 7.1  |
|            | 70%             | 6.0  | 6.1  | 6.3        | 6.5  | 6.7  |
|            | 80%             | 5.8  | 5.9  | 6.1        | 6.2  | 6.4  |
| Coal fired | 70%             | 5.3  | 5.6  | 5.9        | 6.2  | 6.5  |
|            | 80%             | 5.0  | 5.2  | 5.4        | 5.7  | 6.0  |
| Nuclear    | 70%             | 5.4  | 5.5  | 5.7        | 5.9  | 6.2  |
|            | 80%             | 5.0  | 5.0  | 5.1        | 5.3  | 5.6  |
|            | 85%             | 4.8  | 4.8  | 4.9        | 5.1  | 5.4  |

\*Lifetime of all sources is 40years.

Source: Nihon Genshiryoku Sangyokaigi (2005), *Genshiryoku Poket book* (in Japanese)

# What is the real cost of generating electricity?



# Methodology (1)

Unit cost of generating electricity

- Based on financial statements of nine electric utilities.
  - Published information
  - Real costs of generating electricity
- Using "the Rule of Cost Calculation of Power Supply for Electric Utilities" (METI) (in Japanese)

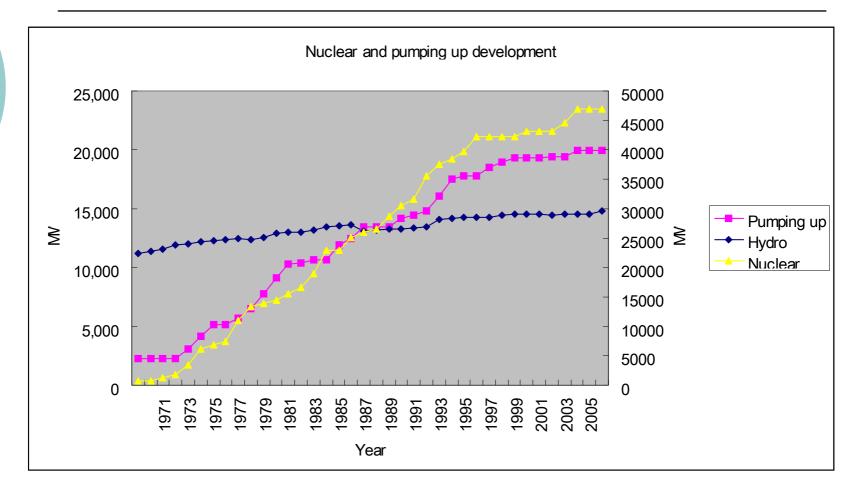
Published calculation method

 Calculate the real average cost from 1970, when commercial use of nuclear power started, to 2007 (UPDATE)

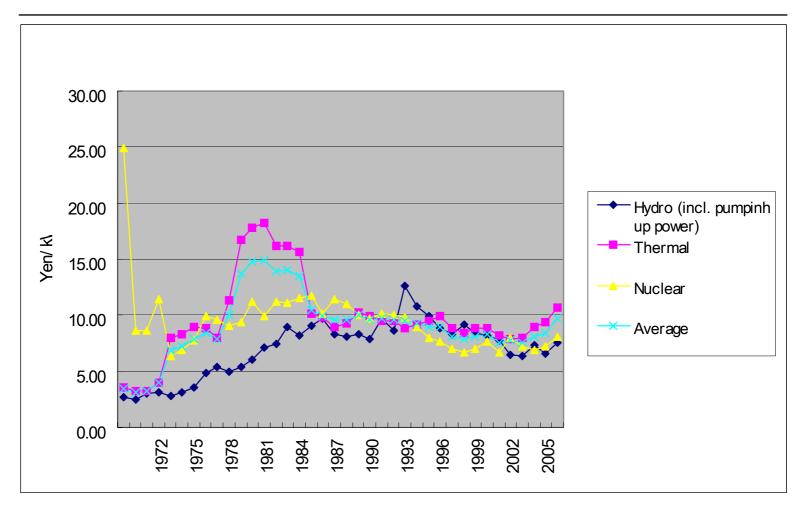
$$P_{h} = \frac{B_{h} + (C_{h} + D_{h} + G_{h}) \times r}{A_{h}}$$

$$P_{t} = \frac{B_{t} + (C_{t} + D_{t} + F_{t} + G_{t} + H_{t}) \times r}{A_{t}}$$

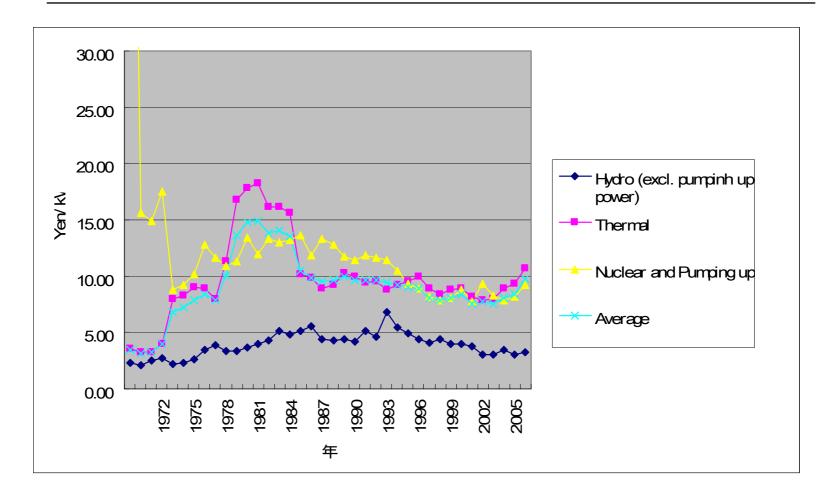
$$P_{n} = \frac{B_{n} + (C_{n} + D_{n} + E_{n} + F_{n} + G_{n}) \times r}{A_{n}}$$


Source: Murota (1991) (in Japanese)

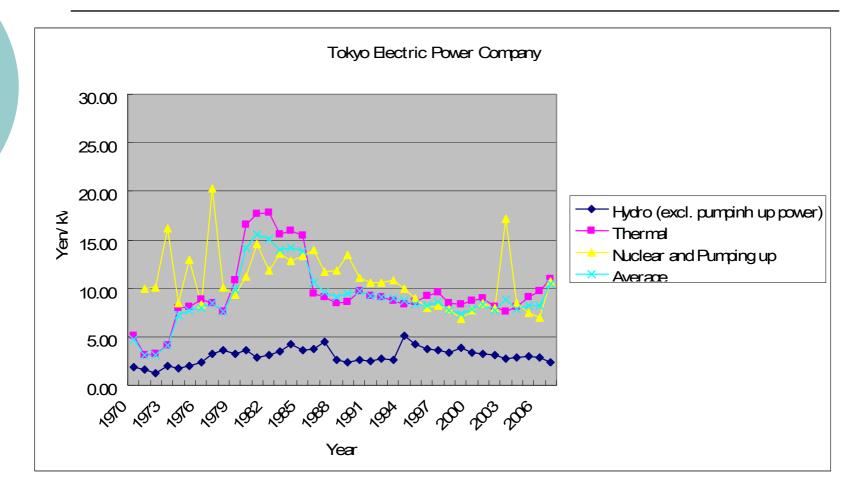
P: unit cost of generating electricity A: total generated electricity C: fixed assets  $\times r$  D: assets in construction process E: nuclear fuel assets F: specified investment G: operating capital r: rate of return h: hydro t: thermal *n*: nuclear


# Methodology (1) - 2

- Separate "pumping up hydro" from "hydro" and define the cost of "nuclear and pumping up". (NEW)
  - "Pumping up" hydro power stations have been developed together with nuclear power development like in a single body.


# Nuclear and pumping up




# Unit costs of hydro, thermal and nuclear



# Unit costs of hydro (excl. pumping up), thermal and "nuclear and pumping up"



### Trend of unit costs (Tokyo Electric Power Company)



### Result (1): average costs (1970-2007)

|                | Hydro incl.<br>pumping up | Hydro excl.<br>pumping up | Thermal | Nuclear | Nuclear and puming up |
|----------------|---------------------------|---------------------------|---------|---------|-----------------------|
| Yen/kWh        | 7.08                      | 3.88                      | 9.80    | 8.64    | 10.13                 |
| Cent(USD)/kWh  | 6.43                      | 3.52                      | 8.91    | 7.85    | 9.21                  |
| Cent(Euro)/kWh | 4.72                      | 2.58                      | 6.53    | 5.76    | 6.75                  |

1USD = 110 Yen

1Euro = 150 Yen

# Costs of generating electricity

|                          | 1970s | 1980s | 1990s | 2000-07 |
|--------------------------|-------|-------|-------|---------|
| Hydro (incl. pumping up) | 3.56  | 7.80  | 9.32  | 7.31    |
| Hydro (excl. pumping up) | 2.72  | 4.42  | 4.77  | 3.47    |
| Pumping up               | 40.83 | 81.57 | 50.02 | 41.81   |
| Thermal (Fossil Fuel)    | 7.11  | 13.67 | 9.39  | 8.90    |
| Nuclear                  | 8.85  | 10.98 | 8.61  | 7.29    |
| Nuclear and pumping up   | 11.55 | 12.90 | 10.07 | 8.44    |

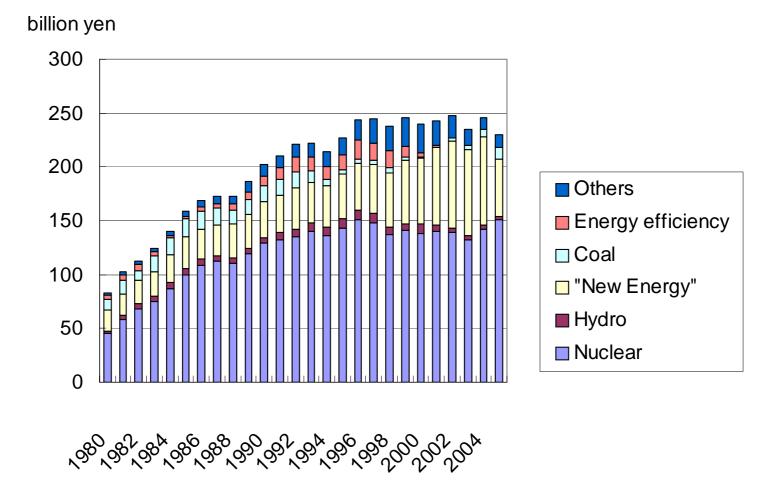
#### According to the calculated result (1),

- Nuclear is not the cheapest option for generating electricity;
- Hydro is the cheapest to generate electricity even if it includes pumping up.
- "Nuclear and pumping up" is the most expensive.

# Methodology (2)

Calculate average state aid for each source of electricity on the National Budget

- Based on the national budget document
  - Published information
  - Real figure of state aid
- 1. Classify budget data into each source of electricity.
- 2. Accumulate the total amount of public expenditure for each source from 1970 to 2005.
- 3. Divide the total amount of public expenditure for each source by the total electricity of each source.


#### Japan's energy budget system

- Budget for energy in a general account
- Special accounts for energy
  - A special account for promotion of power resources development
  - A special account for upgrading the system of energy demand and supply

#### Budget for energy in a general account



#### Budget on an account for electricity use



# Calculated result (2) : State aid for generating electricity (1970-2005)

|                                    | yen / kWh | cent (USD)/ kWh | cent (euro)/ kWh |
|------------------------------------|-----------|-----------------|------------------|
| Hydro<br>(including pumped strage) | 0.13      | 0.11            | 0.08             |
| Thermal                            | 0.02      | 0.02            | 0.01             |
| Nuclear                            | 1.56      | 1.30            | 0.98             |
| USD=120 yen                        |           |                 |                  |

Euro =160 yen

#### According to the calculated result (2),

- The Japanese government has paid huge amount of state aid for nuclear power development since 1970;
- Nuclear is the most expensive source of electricity for the Japanese government.

### Result (average 1970-2005)

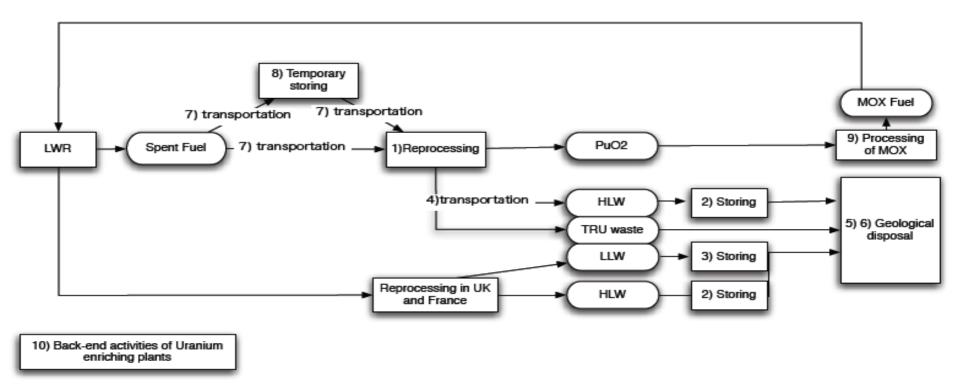
|                | unit cost | state aid | Total   |              |               |
|----------------|-----------|-----------|---------|--------------|---------------|
|                | paid by   | (yen/kW   | yen/kWh | cent(US)/kWh | cent(euro)/kW |
| Hydro          |           |           |         |              |               |
| (including     | 7.22      | 0.13      | 7.35    | 6.13         | 4.59          |
| pumped strage) |           |           |         |              |               |
| Thermal        | 9.41      | 0.02      | 9.43    | 7.86         | 5.89          |
| Nuclear        | 8.53      | 1.53      | 10.06   | 8.38         | 6.29          |

### Conclusion

 As a whole, the cost of nuclear was the highest of conventional sources of electricity from 1970 to 2005 if state aid was considered.

# Economics of back-end activities

- In addition to front-end costs, nuclear needs back-end costs.
- During 2002 2004, Japanese government held a special advisory committee on the total cost of back-end activities.
- According to the report published by the committee, the total cost of the whole back-end activities will be 18.8 trillion yen!


### **Back-end cost**

|                                           | Yen           | Euros         |
|-------------------------------------------|---------------|---------------|
| Reprocessing                              | 11 trillion   | 73billion     |
| Management of high level radioactive      |               |               |
| waste returned from foreign countries     | 300 billion   | 2 billion     |
| Management of low level radioactive       |               |               |
| waste returned from foreign countries     | 570 billion   | 3.8billion    |
| Transportation of high level radioactive  |               |               |
| wastes                                    | 190 billion   | 1.3 billion   |
| Disposal of high level radioactive wastes | 2.55 trillion | 17 billion    |
| Geological disposal of TRU waste          | 810 billion   | 5.4 billion   |
| Transportation of spent fuel              | 920 billion   | 6.1 billion   |
| Temporary storing of spent fuel           | 1.01 trillion | 6.7 billion   |
| MOX fuel processing                       | 1.19 trillion | 7.9 billion   |
| Back-end activities of Uranium enriching  |               |               |
| plants                                    | 240 billion   |               |
| Total                                     | 18.8 trillion | 125.3 billion |
|                                           |               |               |

1 Euro = 150 Yen

# Back-end activities calculated

#### Back end activities considered



### **Question & Methodology**

- Is the back-end cost publicized by the government real?
  - Aren't there any other possible costs?
  - Are assumptions for the calculation adequate?
- Methodology
  - Read and analyze all background papers for the governmental calculation.

# Findings 1/2

- The cost is not for the whole process of back-end activities.
  - The cost is just for half amount of the spent fuel and radioactive wastes until 2048.
  - Therefore, the cost will be doubled.
  - In addition, some activities are not included.
- Flawed assumption
  - 100% operating rate of a reprocessing plant
    - BNFL 4% (2007), AREVANC(COGEMA) 56% (2007)
    - o Therefore, the cost will increase.

# Findings 2/2

- The value of the MOX fuel (mixed oxide fuel) which will be produced by reprocessing is equivalent to just 0.9 trillion yen.
  - Remember that the cost of reprocessing is 11.8 trillion yen even with the 100% operation rate! The cost is 13 times more than the value.
  - The reprocessing is totally inefficient.

#### Concluding remarks on back-end costs

- Reprocessing is not efficient from the viewpoint of economics.
- The cost of back-end activities will rise dramatically in the future. (may be 30 trillion yen and more)

 Japan should abandon her reprocessing strategy immediately.

# Thank you for your attention

Kenichi Oshima, Ph.D E-mail: <u>k-oshima@cj8.so-net.ne.jp</u>

College of International Relations, Ritsumeikan University 56-1 Tojiinkitamachi Kitaku Kyoto 603-8577 Japan