

The German energy policy dilemma between nuclear phase out, coal dominance and climate leadership:

www.diw.de

A case for CCS?

Salzburg, 15 September 2008 Barbara Praetorius

Overview

Introduction

Dynamics of CCS

Mitigation scenarios

Conclusions

 Case study within TIPS Transformation and Innovation in Power Systems Project (2002-2007/8)

- Interdisciplinary approach to understanding innovation dynamics and potential contribution of selected innovations to a sustainable electricity system
- Technological, governance, and behavioural innovations
- Research questions for case study on CCS:
 - Ecological effects
 - Dynamics of the innovation process
 - Potential contribution to future electricity system
 - Conclusions for shaping innovation dynamics

Brief history: major climate and energy policies and measures in Germany

www.diw.de

- 1987 German Bundestag "Enquete Commission on Climate Change"
- 1990-2005 official target of reducing CO₂ emissions by 25%
- 1998 Electricity market liberalisation (grid regulator in 2005 only)
- 1999 Ecological tax reform
- 2002 Nuclear phase-out until 2020
- 2005 European Emissions Trading Scheme
- Feed-in payments for "green" and "energy efficient" electricity
 - 1990 Feed-in Law with fix remuneration for electricity from renewables, followed by 2000 Renewable Energy Sources Act
 - Cogeneration law 2000/2002: bonus payment for cogen electricity
- Financial support programmes for efficiency and renewables
- Command and control instruments to enhance energy efficiency in
 households (heating, insulation etc)

- Tradition of applying a mixture of policies & measures

(cont.)

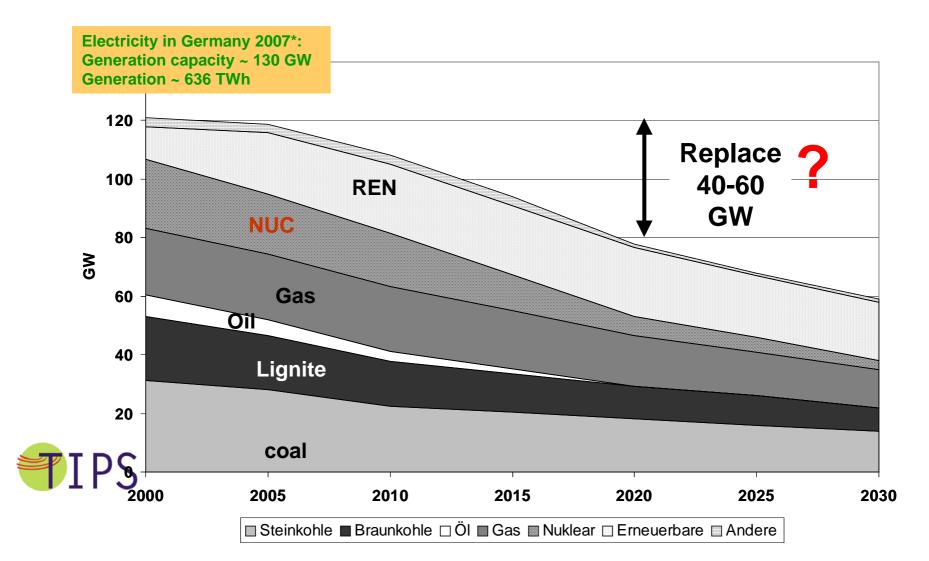
Recent targets and programmes

- EU 20-20-20 package
- CO_2 reduction of -40% between 2005-2020
- CO₂ reduction of -80% until 2050
- Renewables up to 25-30% until 2020
- Energy efficiency up by 20% until 2020 (compared to 2005)
- Cogeneration up to 25% of electricity generation until 2020
- Meseberg "Integrated Energy and Climate Programme" 2007 (Parliament passed package 1 in Dec 07 and package 2 in June 08)
- (and still nuclear phase-out until 2020)

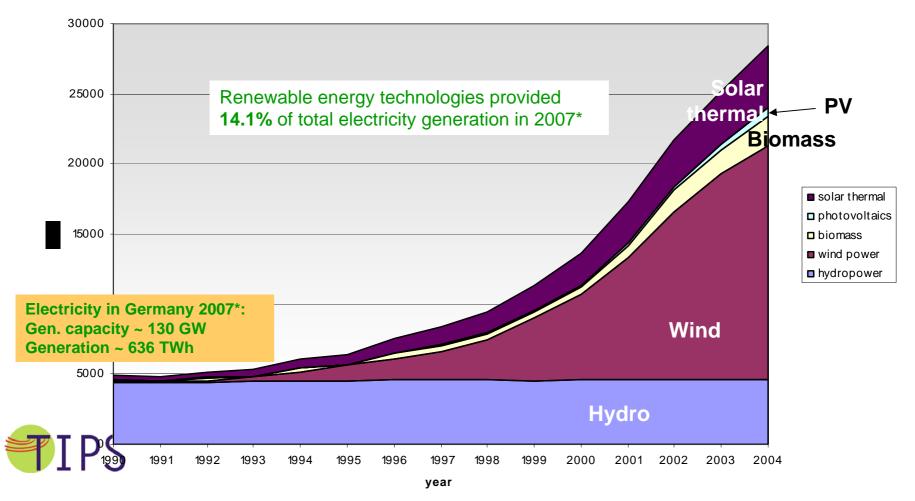
CO_2 emissions and CO_2 intensity in GER, 1990-2005

www.diw.de

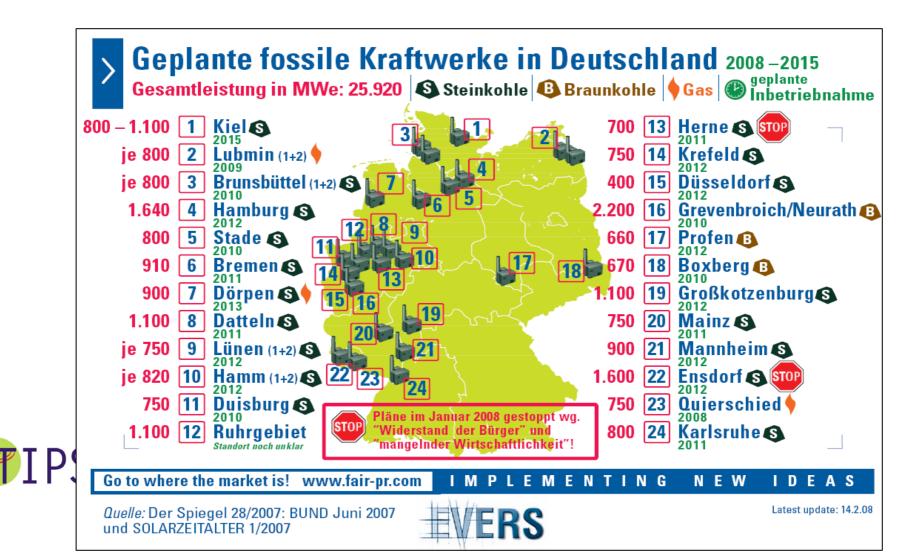
in Germany, 1990 - 2005 1990 = 100


DIW BERLIN

105 Unadjusted emissions Special factor in GER: Temperature-adjusted emissions Unadjusted macroeconomic intensity 100 Reunification in 1990 and Temperature-adjusted macroeconomic intensity subsequent de-industrialization 95 in East Germany 90 absolute emissions down to 85 ~ 83% of 1990 level 80 75 70 \leftarrow CO₂ intensity down to ~68% of 1990 level 65 60 1994 1995 ిల్లి 'ogi


Reinvestment cycle in German electricity

Renewable energy in Germany: Cumulative installed capacity 1990-2004



Source: Statistisches Bundesamt, BMWI, BDEW, AG Energiebilanzen. 2007 preliminary data, partially estimated.

New coal plants and public protests in Germany (from 1/2008)

Interim summary

- Ambitious German climate targets, price(s) for CO2
- Major investment challenges in power sector
- Dilemma between nuclear phase out, dominance of coal, reinvestment needs and protests against new "dirty" coal plants

- Renewables with increasing contribution but enough to fill the gap soon enough?
- Efficiency also contributes to reduction in supply but enough?
 - Question: What should be the role of CCS?

Overview

Introduction

Dynamics of CCS

Mitigation scenarios

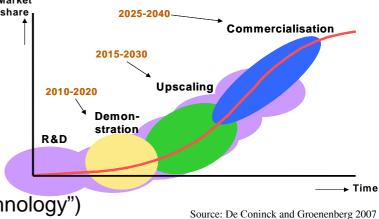
Conclusions

CCS state of the art and potential

Technology

- All options still under development (need for R&D)
- Scenarios: between 5 and 50 % of electricity generation with CCS

Economics, availability & timing


- Economically viable at a CO₂ price of 30 50 €/t (renewables too!)
- "Commercially" available not before 2020
- Only for large point emission sources (large power plants)

Storage

- Theoretical capacity of 40-150 yrs ("bridging technology")
- Many open geological issues (acid, leakage)

Leakage and the energy penalty

- Leakage from storage sites possible (slow vs. sudden release)
- Conversion efficiency decreases significantly (8-12 %-points)
 ➔ increase in resource depletion

CCS activities

Name	Type and time of activity	Description, actors involved
International level		
CSLF	International forum, since 2003	Interministerial platform to foster the deployment of CCS
EU level		1 5
CO ₂ STORE	Research project, 2003-2006	Storage of CO_2 in aquifers. 19 industry & research partners. EU FP5.
CO2NET	Knowledge Transfer Network; resource and technical portal, 2002-2005; follow- up activities	To develop CCS as a "safe, technically feasible, socially acceptable option". Network of 65 stakeholders from 18 countries. Initially under EU FP5, now self-funded by members.
CASTOR	Strategic project, 2004-2008	Focus on post combustion (65% of budget) and storage (25%). 30 industry & research organizations from 11 countries, EU FP6.
ENCAP	Research consortium 2004-2009	, Technology development. 6 large fossil fuel users, 11 technology providers, 16 R&T institutions. EU FP6.
Co2GeoNet	Research network of excellence, 2004- 2009	Research & training/ dissemination network on storage-related issues. 13 scientific institutes. EU FP6.
ZEP		a,Strategic research agenda for low- emission power plants, involving industry, NGO, scientists, EU, etc. Funded by EU and industry.
ACCSEPT	Research consortium 2006-2007	, Assessment of acceptability. Research institutes & consultants. EU FP6.
CO ₂ SINK	Pilot plant research consortium, 2004- 2009	In-situ R&D Laboratory for Geological Storage in Ketzin (GER). Industry & research institutes. EU FP 6.
National level (Germany)		
GEOTECHNO- LOGIEN	Special research	Projects on CO_2 storage. 62 research institutes, 38 industry partners.
COORETEC	Research consortium 2003-today	Funding by BMBF, BGR and DFG. , Economics ministry, research, industry
Oxyfuel IGCC+CCS	Pilot plant	Vattenfall, 30 MW, launch in 2008 RWE, 450 MW, in 2014

CCS status and constellations in GER

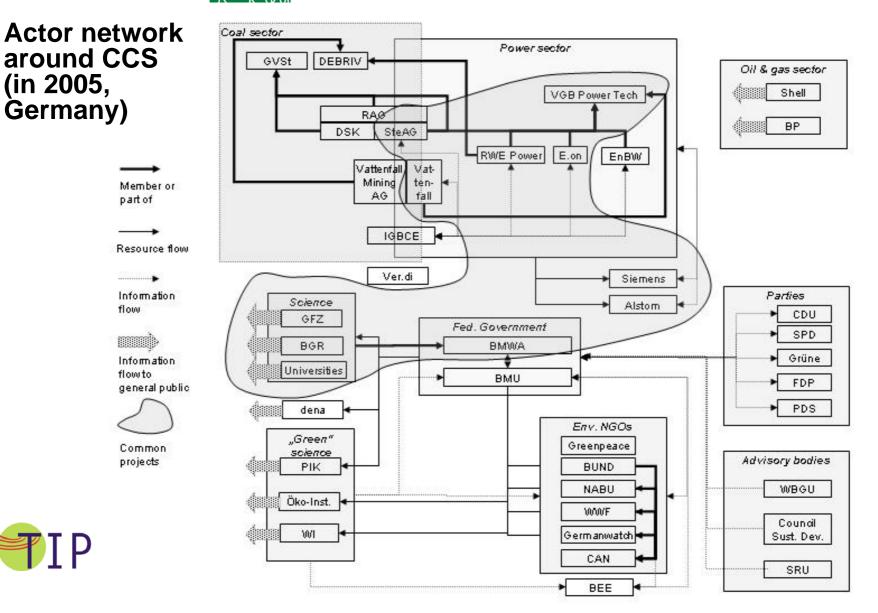
2008: Agenda setting phase almost done, policy & institutional framework in work

German Government to support R&D (Integrated Energy & Climate Programme, Meseberg 2007)

www.diw.de

- EU draft directive (January 2008)
- Increasing political debate about CCS framework and support
- Little public knowledge, mostly via media as multipliers
- Vattenfall oxyfuel pilot plant started to run in September 2008

Two relevant network structures can be identified


1. <u>Drivers</u>: Electricity industry, power plant industry, oil and gas industry, mostly technology-oriented researchers, the Minister for the Economy (BMWI), Ministry for Research (BMBF)

2. <u>Critics:</u> Some environmental NGOs (some less), Ministry for the Environment (BMU), renewable energy lobby, parts of scientific community

Source: Fischer, Praetorius 2008

Dynamics of the CCS innovation process

- Increasing number of activities and of funding on EU and GER levels
- Government commitment to 2-3 national pilot plants
- Dynamics mostly led by research, some support by ESI and minerals/gas industry, and by industry ministries

- Never fierce opposition, but no enthousiastic drivers either, yet powerful protagonists
- CCS creates ambivalence and uncertainties which partly cause traditional coalitions to loosen
- Risks and uncertainty issues unsolved, creating financial flows towards research institutes, but not so much in industry yet Ongoing international process creating legal framework
- ➔ Increasing levels of legitimation & knowledge development & resource mobilisation & expectations

- → Yet little public knowledge / acceptance to date
 - ➔ Innovation process is creating momentum of its own

Reasons for dynamics and related risks

- CCS implies structural decision
 - Continues centralized system w/ large plants (carbon lock-in)

www.diw.de

- Limited compatibility with smaller-scale supply structures
- CCS distracts money and attention from efficiency, renewables & distributed power
- CCS is incremental innovation promises mitigation without change of electricity system structures

But

- Speculative technology with high degree of uncertainty
 - Technological and economic availability?
 - Risks and legal issues?
 - Future carbon price and costs?

Risk of overstating its mitigation potential by politicians
Parallels to fuel cells and hybrid car hypes

Overview

Introduction

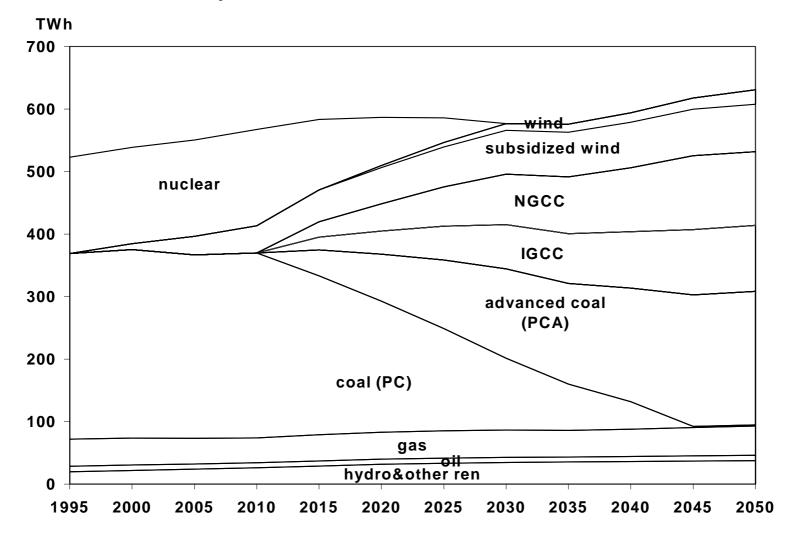
Dynamics

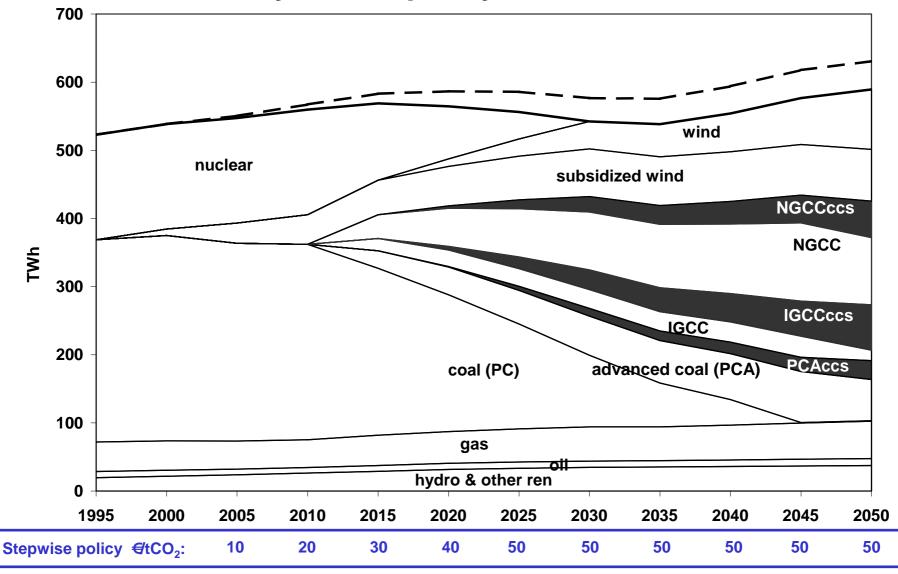
Mitigation scenarios

Conclusions

Potential impact on future electricity system: Mitigation scenarios

- Wide range of cost estimates for CCS
- Studies including CCS as a mitigation option conclude:
 - Lower economic costs when CCS is included
 - High uncertainties on costs
 - Time of commercial availability matters
- Most studies are of bottom-up type and include detailed technology information
- They lack interaction with rest of economy, take energy demand and macroeconomic development as given
- Macroeconomic (top-down) models lack technology detail
- Attempt to combine features from both models




Electricity sector baseline


Electricity sector policy case

Simulated emissions reductions, Germany 2040

Overview

Introduction

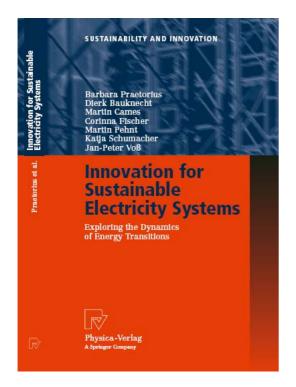
Dynamics

Mitigation scenarios

Conclusions

Conclusions

- → It is likely that CCS will come (but timing unclear)
- → CCS in GER important in relation to coal and nuclear power


www.diw.de

- Capture ready is important for new coal plants to be politically acceptable
- ➔ Public awareness is low and acceptance unknown yet
- ➔ Given the many uncertainties, CCS may serve as one of many bridging technologies (a given mitigation target can be achieved a lower marginal costs when CCS is included)
- → Stringent and reliable CO_2 policy framework is important
- ➔ Germany is likely to follow its strategy of a broad mix of measures for successful CO₂ mitigation (CCS + renewables + energy efficiency + other complementary efforts)
- → ALL technology research efforts must be intensified (Climate "Apollo" Programme) to combat climate change!

Timing and technology matter: CCS may only play a limited role in Germany, but may well play an important role worldwide (China etc)

New book!

Praetorius, B et al. (2009), Innovation for Sustainable Electricity Systems. Exploring the Dynamics of Energy Transitions. Berlin, Heidelberg: Physica/Springer

www.diw.de

Fischer, C; Praetorius, B (2008): Carbon Capture and Storage: Settling the German Coal vs. Climate Dispute? In: IJETM International Journal of Environmental Technology and Management, Special Issue on Energy Innovation, Vol. 9, Nos. 2/3, 2008, 176-203

Praetorius, B (forthcoming in 2009): The dilemma of German electricity politics and the potential future role of CCS. In: Meadowcroft J. (ed): The Politics of Carbon Capture and Storage. Edward Elgar. In preparation.

Praetorius, B; Schumacher, K (submitted): Greenhouse Gas Mitigation in a Carbon Constrained World: The Role of Carbon Capture and Storage. Submitted to Energy Policy, August 2008

Praetorius, B (submitted): On the dynamics of sustainable electricity innovations. Submitted to GAIA, July 2008

DIW BERLIN

Thank you for your attention

Dr. Barbara Praetorius

As of 1 October 2008:

Division Manager, Strategy and Energy Issues Verband kommunaler Unternehmen VKU Hausvogteiplatz 3-4 10117 Berlin Email praetorius@vku.de www.vku.de

TIPS Transformation and Innovation in Power Systems www.tips-project.de