Energy Efficiency Networks – a new policy instrument to improve Energy efficiency in various countries

The 2015 Conference of the REFORM Group
Salzburg, September 3, 2015

Eberhard Jochem
Fraunhofer Institute for Systems and Innovation Research (Fh-ISI)
Centre for Energy Policy and Economics (CEPE), ETH Zürich

and

Armin Eberle
Energy Agency Swiss Industry (EnAW), Zürich
Overview

- Present economic efficiency potentials – a snap-shot of present technology and energy price levels

- Major obstacles and unused constructive factors (within the energy using company)
 - the focus on risk, “robust” management rules (80/20%), procurement by insufficiently specified tenders; motivation and responsibilities of machine/plant operators or apprentices

- Energy efficiency networks as one answer for SMEs and larger companies

- the diffusion of the energy efficiency networks as a policy instrument in different policy frameworks
Profitable energy efficiency potentials of industry and services until 2020

The case - Germany:

- Economic potential 2014 to 2020: 500 PJ (-2.2% per year)
- Reduced energy cost: 11 Billion € in 2020 (-12%)
- Reduction of CO2 emissions: around 45 Mill. Tonnes (-5% of Germany's GHG)
- Additional net 45,000 new jobs (0.1%, induced by a 30 Billion € investment)
- Slight net increase in gross domestic product (+3 Billion € in 2020)
- Smaller capital losses to energy producers by reduced energy imports

Can these potentials be realised?

Source: Jochem u.a. energiewirtschaftliche Tagesfragen, 64(2014)1/2, S.81-85
A selection of existing obstacles – the traditional view

- lack of knowledge and sufficient market survey of energy managers, particularly in SMCs, consulting engineers, architects, installers, bankers

- high transaction cost of the energy manager (for searching solutions, tendering, decision making, installation)

- lack of own capital, fear of lending more capital for investments of off-sites

- technology producers or whole sale often pursue their own interests opposing the possible innovation steps of efficient solutions

- 80% of companies using only risk measures (payback period), but not profitability indicators (e.g. internal interest rate) for their decisions

Why are present profitable efficiency potentials not fully realised?
Payback time requirement (in years)

<table>
<thead>
<tr>
<th>Useful life of plant (in years)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24%</td>
<td>35%</td>
<td>41%</td>
<td>45%</td>
<td>47%</td>
<td>49%</td>
<td>49.5%</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>13%</td>
<td>20%</td>
<td>25%</td>
<td>27%</td>
<td>31%</td>
<td>32%</td>
<td>33%</td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>8%</td>
<td>13%</td>
<td>17%</td>
<td>22%</td>
<td>23%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>6%</td>
<td>10%</td>
<td>16%</td>
<td>17%</td>
<td>18.5%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>unf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,5%</td>
</tr>
</tbody>
</table>

1) Continuous energy saving is assumed over the whole useful life of the plant

Profitable investment possibilities eliminated by a four-year payback time requirement

One of the major company-internal obstacles of resource efficiency

As long as 80% of technology producers and suppliers do not calculate internal interest rates and life cycle cost, most of the profitable efficiency investments will not be realised – an example how decision routines have to be changed
in addition – often unused supporting factors
consider the motivations of the actors of the innovation system

- Opportunities from the social science perspective: (not just “homo oeconomicus”)
 - first movers well informed, risk taking (as tec producers or tec users)
 - support of first movers (information, training, R&D&D, financially)
 - social prestige of CEOs or companies (green image, member of the Green Dow Jones, leaders who are responsive to societal needs or regional chances)
 - establish efficiency awards, a selected company group of top efficient companies at the national level (e.g. Climate protection companies)
 - professional career of energy managers and acknowledgement of workers by unexpected high savings of energy cost, by motivation, advice to the controller. etc.
 - establish best practice information, local efficiency networks, ask your supplier for carbon foot prints, etc.
LEEN - Local Energy Efficiency Networks – reducing the transaction cost by mutual exchange of experiences

How do the networks operate with 10 to 15 local companies?

- **Phase 1.** - energy audit, a report, a list of measures with economic evaluation
 - a joint efficiency and mitigation target

- **Phase 2:** - four meetings per year, professionally prepared and moderated,
 - a site visit included
 - one technology (or organisational measure) each meeting, external expert
 - yearly monitoring, by participant (confidential) and for the network,
 - hot line for the participants,

Results:
- many obstacles get reduced, often unused supporting factors are applied
- doubling of efficiency progress compared to average of industry or branch
- average results per participant: 180.000 €/a energy cost savings per site and 10 to 20 €/t CO2 profits

More in the following paper
How does it work?

PHASE 0
(3 to 9 months)

- Acquisition Meetings:
 - LEEN-Concept
 - organization
 - process
 - costs
 - profit

- Letter of Intent / Contract

- Official start of network

PHASE 1
(5 to 10 months)

- Identification of profitable energy savings:
 - data collection sheet
 - site inspection
 - energy review report

- Target agreement
 - energy reduction
 - CO₂ reduction

PHASE 2
(2 to 4 years)

- continuous network meetings (3 to 4 meetings per year)
 - site inspection
 - lecture on an efficiency topic
 - presentation of realized measures
 - general exchange of experiences

- Completion:
 - communication on results
 - decision, if network will be continued

Monitoring of results

Communication on network activities

Timeframe 3 to 4 years
Measures summary – the same tool: energy audit and yearly monitoring

<table>
<thead>
<tr>
<th>Name of measure</th>
<th>Purchased electricity [MWh/a]</th>
<th>Light fuel oil [MWh/a]</th>
<th>Wood chips [MWh/a]</th>
<th>Time of use [a]</th>
<th>Investment eff. [€]</th>
<th>Additional Investment (eff.) [€]</th>
<th>Net present value (10%) [€]</th>
<th>Internal rate of return [1] [%]</th>
<th>Static amortisation time [a]</th>
<th>Dyn. amortisation time (10%) [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E03 Reducing electricity consumption (Base load)</td>
<td>65,0</td>
<td></td>
<td></td>
<td>10</td>
<td>2.000</td>
<td>2.000</td>
<td>41.065</td>
<td>350%</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>V01 free outflow of waste air via roof during summer</td>
<td>15,0</td>
<td></td>
<td></td>
<td>10</td>
<td>500</td>
<td>500</td>
<td>9.438</td>
<td>323%</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>L01 Retrofitting: mirror reflector/ clear screen capping</td>
<td>30,0</td>
<td></td>
<td></td>
<td>10</td>
<td>3.000</td>
<td>3.000</td>
<td>16.876</td>
<td>108%</td>
<td>0,9</td>
<td>1,0</td>
</tr>
<tr>
<td>E04 Retrofitting: Eff1-drives</td>
<td>70,0</td>
<td></td>
<td></td>
<td>10</td>
<td>7.300</td>
<td>7.300</td>
<td>39.077</td>
<td>103%</td>
<td>1,0</td>
<td>1,1</td>
</tr>
<tr>
<td>H05 Biomass: Reduction the flow temperature in the heating circuit</td>
<td>-500,0</td>
<td>500,0</td>
<td></td>
<td>15</td>
<td>25.000</td>
<td>25.000</td>
<td>126.643</td>
<td>80%</td>
<td>1,3</td>
<td>1,4</td>
</tr>
<tr>
<td>CA02 Reduction of the pressure in the compressed air network</td>
<td>38,0</td>
<td></td>
<td></td>
<td>10</td>
<td>7.000</td>
<td>7.000</td>
<td>18.176</td>
<td>58%</td>
<td>1,7</td>
<td>2,0</td>
</tr>
<tr>
<td>E02 Using standby set to reduce peak loads</td>
<td>10</td>
<td>3.000</td>
<td>3.000</td>
<td>10</td>
<td>7.000</td>
<td>7.000</td>
<td>18.176</td>
<td>58%</td>
<td>1,7</td>
<td>2,0</td>
</tr>
<tr>
<td>E01 Reduction of peak load</td>
<td>10</td>
<td>5.000</td>
<td>5.000</td>
<td>10</td>
<td>7.000</td>
<td>7.000</td>
<td>18.176</td>
<td>58%</td>
<td>1,7</td>
<td>2,0</td>
</tr>
<tr>
<td>OR01 Installation of an energy management system</td>
<td>50,0</td>
<td>14,0</td>
<td>11,0</td>
<td>15</td>
<td>20.000</td>
<td>20.000</td>
<td>29.618</td>
<td>32%</td>
<td>3,1</td>
<td>3,8</td>
</tr>
<tr>
<td>H06 Utilisation of waste heat from the injection moulding</td>
<td>200,0</td>
<td></td>
<td></td>
<td>10</td>
<td>10.000</td>
<td>10.000</td>
<td>9.137</td>
<td>29%</td>
<td>3,2</td>
<td>4,1</td>
</tr>
<tr>
<td>CA01 Retrofit heat recovery for compressor AM-37</td>
<td>85,0</td>
<td></td>
<td></td>
<td>10</td>
<td>15.000</td>
<td>15.000</td>
<td>13.158</td>
<td>28%</td>
<td>3,3</td>
<td>3,8</td>
</tr>
<tr>
<td>L02 Retrofitting of energy efficient lamps with electronic ballast</td>
<td>20,0</td>
<td></td>
<td></td>
<td>10</td>
<td>12.000</td>
<td>6.000</td>
<td>4.178</td>
<td>25%</td>
<td>3,6</td>
<td>4,7</td>
</tr>
<tr>
<td>C01 Insulation of refrigerant pipes and fittings</td>
<td>1,0</td>
<td></td>
<td></td>
<td>10</td>
<td>500</td>
<td>500</td>
<td>163</td>
<td>17%</td>
<td>4,6</td>
<td>6,5</td>
</tr>
<tr>
<td>C02 Utilisation of waste heat from cooling processes</td>
<td>259,0</td>
<td></td>
<td></td>
<td>10</td>
<td>68.000</td>
<td>68.000</td>
<td>17.798</td>
<td>16%</td>
<td>4,9</td>
<td>7,0</td>
</tr>
<tr>
<td>REN01 Installation of a photovoltaic system (PV)</td>
<td>20</td>
<td>120.000</td>
<td>120.000</td>
<td>20</td>
<td>-27.202</td>
<td></td>
<td>-27.202</td>
<td>7%</td>
<td>11,0</td>
<td>-1</td>
</tr>
<tr>
<td>H02 Insulation of burner plate</td>
<td>1,0</td>
<td></td>
<td></td>
<td>10</td>
<td>500</td>
<td>500</td>
<td>-169</td>
<td>1%</td>
<td>9,3</td>
<td>27,5</td>
</tr>
<tr>
<td>BG01 Energy-efficient refurbishment of shed roof</td>
<td>100,0</td>
<td></td>
<td></td>
<td>40</td>
<td>150.000</td>
<td>100.000</td>
<td>-83.882</td>
<td>-1</td>
<td>60,7</td>
<td>-1</td>
</tr>
</tbody>
</table>

Investment today eff. (profitable measures)

- **Sum profitable measures**: 370,000 €
- **Net present value (10%)**: 330,000 €
- **Internal rate of return**: 54,0%
- **Static amortisation time**: 1,8 a
- **Dyn. amortisation time (10%)**: 2,1 a

- **Sum all measures**: 340,000 €
- **Net present value (10%)**: 330,000 €
- **Internal rate of return**: 23,0%
- **Static amortisation time**: 4,3 a
- **Dyn. amortisation time (10%)**: 6,0 a
Energy Efficiency Networks – from an idea of an engineer to an accepted policy instrument

➢ Switzerland

1987: First network in Switzerland (Zurich), invented by Thomas Bürki, a Swiss consulting engineer

the 1990s: replication and improvement of the Modell Zürich as EnergieModell Switzerland, funded by the Fed. Office of Energy

2002: The Law on the CO2 surcharge: companies with target obligations, confirmed by the EnAW, are exempted from the surcharge

surcharge: 2008: 12,- CHF to 2016: 72,- CHF per tonne of CO2

2015: 90 networks and in addition 900 small and medium sized companies, totalling to 3500 production sites
Energy Efficiency Networks – from an idea of an engineer to an accepted policy instrument

- Switzerland
 - 1987: First network in Switzerland (Zurich), invented by Thomas Bürki, a Swiss consulting engineer
 - The 1990s: replication and improvement of the Modell Zürich as EnergieModell Switzerland, funded by the Fed. Office of Energy

- 90 networks a la „Zürich“ with 900 participating companies
- 900 SMEs in the SME-Model
- Total: 3,500 production sites
- Benchmark Model was stopped in 2013 in favour of SME-Model
- Transport networks were labelled as normal networks in 2015
Energy Efficiency Networks – from an idea of an engineer to an accepted policy instrument

Germany

2002: first energy efficiency network in the region of Hohenlohe

2006 – 2008: 5 pilot efficiency networks in five regions of Germany

2014: foundation of the association of energy efficiency networks in Germany (AGEEN) www.ageen.org

2015: about 80 energy efficiency networks operating or already finished, involving about 850 production sites
Energy Efficiency Networks – from an idea of an engineer to an accepted policy instrument

Austria

2012: first energy efficiency network (LEEN) in Vorarlberg
April 2014: 2nd LEEN network in Austria operating (ENAMO)
July 2014: legislation passed the Austrian Parliament demanding a “measure-based” prove that the customers of energy suppliers have reduced specific energy demand by 1 % per year
August 2015: five energy efficiency networks operating

Easy diffusion of the policy instrument (all supporting elements of the network management in German, high pressure on the energy suppliers)
Energy Efficiency Networks – the case of China 2011 to 2015

- **China:**
 - Chinese delegations visited the Fraunhofer Institute and EnAW in 2011 and 2012.
 - Invitation for training 50 consulting engineers and 50 moderators in 2012 and 2013.
 - All trainee courses in China over three weeks were professionally shoted.

- Chinese efficiency legislation: of 2012 the State Grid Company has to prove an energy efficiency improvement of their customers of at least 1% per year.

- The State Grid Company decided to generate some 500 energy efficiency networks within 3 years.

- In 2014, 525 networks were in operation.

- However, little competence and poor performance.
Energy Efficiency Networks –
- an accepted policy instrument

➢ **Outlook**

- 2015: interest in the energy efficiency networks in
 - Sweden (Energy Agency)
 - Belgium (regional institution)
 - Mexico (regional institution)
 - Brasil (consulting engineering company)

➢ EU-Proposal pending (Poland, UK, Belgium, Spain, etc.)

➢ Target groups for network operators in the case of market situation:
 - large utilities; energy agencies,
 - but also: city governments, Chambers of Commerce, consulting engineers,
 - applied research institutes
Thanks for contributing to a sustainable development in the global context!

ejochem@ethz.ch

www.energie-effizienz-netzwerke.de
www.marie.streks.de
www.leen-system.de /en/

cepe Centre for Energy Policy and Economics
Department of Management, Technology and Economics