US GHG and Energy Polices – Background and COP21 Commitment

John Jurewitz
Pomona College, USA

Dan Mazmanian
University of Southern California, USA

REFORM
Salzburg Austria
August 1–September 4, 2015
Outline

1. Summary of U.S. GHG Emissions in Global Context
2. A Brief Recap of Past U.S. Domestic Climate Politics and GHG Control Policies
3. A Quantitative Review of Current U.S. GHG Emissions and GHG Control Pledges
4. The U.S. EPA’s Clean Power Plan
5. Independent State GHG Policies
6. Leading from the States: California’s Climate Change Policies
Summary of U.S. GHG Emissions in Global Context
Total Global GHG Emissions by Country: 2011

Source: World Resources Institute 2014, CAIT database
Shares of **Cumulative CO$_2$ Emissions by Country**

1850-2011

- United States: 27%
- European Union (28): 25%
- China: 17%
- Russian Federation: 8%
- India: 4%
- Japan: 3%
- Canada: 2%
- Mexico: 1%
- Brazil: 1%
- Indonesia: 1%
- Rest of the World: 13%

- Electric Power: 32%
- Transportation: 28%
- Industry: 20%
- Agriculture: 10%
- Commercial: 5%
- Residential: 5%

Source: U.S. EPA
A Brief Recap of Past U.S. Domestic Climate Politics and GHG Control Policies
Presidents George Bush I and Bill Clinton Years

• **1992:** Bush I attended the Earth Summit and the U.S. immediately signed and ratified the UNFCCC—the first industrialized country to do so.

• **1995:** The Berlin Mandate adopted at COP-1 created domestic political barriers for U.S. adoption of the Kyoto Protocol.
 – The Berlin Mandate exempted developing countries from making binding commitments.

• **1997:** The U.S. Senate voted 95-0 to adopt the Byrd-Hagel Resolution.
 – The Senate would not ratify any international agreement that did not include binding targets and timetables for developing as well as industrialized nations.

• **1998:** Vice President Al Gore symbolically “signed” the Kyoto Protocol, *but* the Clinton Administration never submitted the protocol to the Senate for ratification.
The Bush II Years:
* A Critical Overall Perspective

- The President Bush II/Vice-President Cheney strategy seems to have been the following:

 1. Emphasize *scientific uncertainty* and encourage public skepticism. **Stifle and censor** contrary views coming out of scientists in the federal agencies.

 2. **Appear to be doing something**, while really doing very little; pursue mostly low-impact “no regrets” measures.

 3. Pursue **separate international initiatives** that **distract and undercut the mainstream efforts** being pursued through the UNFCCC COP process.
The Bush II Years: Some Salient Details

- **2001**: Bush immediately reversed his campaign pledge to “require all power plants to meet clean-air standards in order to reduce emissions of carbon dioxide within a reasonable time period.”

- **2002**: Bush launched a new climate initiative focused on reducing “GHG intensity” (emissions/GDP)—a policy appearing to promise a lot while really delivering very little.

- **2003**: The U.S. Senate rejected 43-to-55 the McCain-Lieberman Climate Stewardship Act to establish a broad carbon cap-and-trade program.

- **2005**: The U.S. Senate adopted a “Sense of the Senate” Resolution calling on Congress to enact “comprehensive and effective...mandatory, market-based limits” to slow, stop, and reverse the growth of GHG emissions, at a rate and manner that would not “significantly harm” the U.S. economy.
The Bush II Years: Some Salient Details (cont’d)

- **2006:** Bush launched the *Asia-Pacific Partnership on Clean Development and Climate (APP)*, which many suspect was intended to distract and undercut the central efforts of the UNFCCC COP process.

- The *Bush EPA* continually took the position that CO₂ was *not an “air pollutant”* under the meaning of the *Clean Air Act* and that EPA was not authorized to regulate carbon emissions.

- **2007:** In *Massachusetts v. EPA* the *Supreme Court* rejected the Bush EPA’s interpretation that CO₂ is not an “air pollutant” under the CAA.
The Supreme Court Ruling in *Massachusetts v. EPA* (April 2007)

- By a split **5-4 decision**, in *Massachusetts v. EPA* the U.S. Supreme Court ruled:
 1. CO\(_2\) is an “air pollutant” under the Clean Air Act
 2. Therefore, the EPA **must consider and rule** on whether CO\(_2\) creates an “endangerment” to human health and welfare.
 3. If CO\(_2\) does create an “endangerment”, the EPA **may still exercise its discretion not to regulate it**, but the EPA must ground its reasons for action or inaction in the statute.

- The **Bush Administration responded** to the Court’s ruling by initiating EPA proceedings but “**kicking the can down the road**” into the next presidential administration for a final EPA decision.
The Obama Administration: A Critical Overall Perspective

• The Obama Administration has been subject to a good amount of criticism by disillusioned environmentalists.

• However, especially in view of the difficult domestic political situation, the Obama EPA has been rather aggressive in pursuing climate change policy within the existing authorities in the Clean Air Act.

• The existing provisions of the Clean Air Act are not well structured for regulating CO\textsubscript{2}. In an ideal world, Congress would enact amendments to the CAA to enable the EPA to regulate GHG emissions through more straightforward and efficient programs.
The Obama Administration: Some Salient Details

• **2008**: Obama pledged to make climate change one of the **top priorities** of his Administration.

• **2009**: U.S. House of Representatives passed the American Clean Energy and Security Act (the **Waxman-Markey Bill**) to establish a national cap-and-trade program, *but the bill failed in the Senate*.

• **2009**: In advance of COP-15 in Copenhagen, Obama announced a provisional pledge to **reduce U.S. GHG emissions by 17% below 2005 levels by 2020 and 83% by 2050**.

• **2010**: The Obama EPA issued an “**Endangerment Finding**” and **proceeded to regulate** GHGs under the CAA.
The Obama Administration: Some Salient Details (cont’d)

• **2010**: EPA issued final rules requiring “Best Available Control Technology” on **new or substantially modified fossil-fuel power plants**.

• **2010-2013**: Substantial tightening of **Corporate Average Fuel Economy (CAFÉ) standards** for all vehicles for 2012-2025 model years.

• **2013**: In his State of the Union address, Obama pledged to implement climate initiatives **through executive orders and other actions if Congress refuses to act on the issue**.

• **2013**: Obama announced his “**Climate Action Plan**” directing the EPA to place certain requirements on the EPA to limit carbon emissions from new and existing power plants.
The Obama Administration: Some Salient Details (cont’d)

• **2014:** EPA issued its very far-reaching **Clean Power Plan** to address GHG emissions throughout the electric power sector.

• **March 2015:** The Obama Administration submitted its **Intended Nationally Determined Contribution** (INDC) to GHG emissions reductions in preparation for COP-21. The U.S. INDC pledges emission reductions of **26-28% below 2005 levels by 2025**—a doubling of the recent experienced rate of decline in U.S. emissions.

• **August 2015:** The EPA finalized its **Clean Power Plan**.
A Quantitative Review of Current U.S. GHG Emissions and GHG Control Pledges

U.S. Energy-Related Carbon Dioxide Emissions, 1973–2040

Note: Shading denotes recession.
Source: EIA (2012b).
Obama’s 2009 Provisional Pledge
Just Prior to COP-15 in Copenhagen

A Pitch to Cut U.S. Emissions

The Obama administration on Wednesday pledged specific targets for lowering greenhouse gas emissions linked to global warming.

By 2020
A drop of about 17 percent below 2005 levels, an amount not seen since the late 1980s

By 2050
A drop of about 83 percent below 2005 levels

Source: Energy Information Administration
In 2013, Obama Announced His “Climate Action Plan”

1. Reduce U.S. GHG Emissions Substantially

2. Prepare for Impacts of Climate Change

3. Provide Leadership in International Efforts
Reducing GHG Emissions under the Climate Action Plan

Electricity
- Reduce existing power plant emissions
- Promote use of renewable power
- Promote advanced fossil energy projects

Transportation
- Increase vehicle fuel economy
- Develop and deploy advanced transportation technologies

Buildings
- Increase energy efficiency practices and investments

Non-Carbon Emissions
- Reduce HFC emissions
- Reduce Methane emissions
U.S. Emissions under COP-15 Target for 2020, and “Intended Nationally Determined Contribution” (INDC) Target for 2025
The most important single policy is the **Clean Power Plan**

2005 Baseline

- **Emissions**:
 - 2014 Forecast for 2025: -9.4%
 - Clean Power Plan: -10.1%
 - Other Parts of Climate Action Plan: -4.7% to -8.2%
 - Additional Measures: -3.1% to -6.6%

Overall:

- 26% – 28% below 2005 levels
The Environmental Protection Agency’s “Clean Power Plan”
EPA’s Final Clean Power Plan

- The final Clean Power Plan requires 32% reductions of CO2 emissions (compared to 2005 levels) from existing power plants by the year 2030.

- The EPA has asserted its authority under Section III(d) of the CAA to impose “Best System of Reduction” (BSER) on the electric power sector.

- The EPA has established BSER standards for each state by modeling the results of applying three well-known feasible and cost-effective “building block” strategies for reducing power plant source emissions.

- States have broad flexibility in achieving their overall BSER goals. They need not apply the building blocks in the specific ways modeled by the EPA for their state.

- Each state must file a State Implementation Plan (SIP) for achieving its designated BSER goal.
The Broad Framework of the Clean Power Plan

The Standard

“Best System of Emission Reduction” (BSER)

The Building Blocks

Reduce coal plant heat rates
Increase use of existing gas plant
Build more low-carbon generation

State-Specific Emission Rates in Tons/MWh

State Implementation Plans (SIPs)
The EPA’s Four Building Blocks and Specific Modeled “BSER” Strategies

Building Blocks

1. Make **coal-fired plants** more emissions efficient

2. Increased use of existing **natural gas plants**

3. Increased use of **low-carbon and zero-carbon generation**

EPA Modeling Assumption

- 6% efficiency improvements thru O&M and capital investments

- Increase average **capacity factors** of existing very efficient Natural Gas Combined Cycle (NGCC) plants to 70%

- Achieve **renewables development** consistent with average regional renewables targets; preserve the 6% of **nuclear plants** forecast to be retired; successfully complete new nuclear plants now under construction
The EPA’s Three Building Blocks and Potential State Compliance Strategies

<table>
<thead>
<tr>
<th>Building Blocks</th>
<th>Potential Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make coal-fired plants more carbon emissions efficient (reduce CO₂ per MWh)</td>
<td>• Increase input-out efficiency of coal plants</td>
</tr>
<tr>
<td></td>
<td>• Co-fire coal with natural gas or other lower-carbon fuel (e.g., closed-loop biomass)</td>
</tr>
<tr>
<td></td>
<td>• Repower coal plant to burn gas</td>
</tr>
<tr>
<td></td>
<td>• Retire coal plants</td>
</tr>
<tr>
<td></td>
<td>• Retrofit Carbon Capture & Sequestration (CCS) to an existing coal plant</td>
</tr>
<tr>
<td></td>
<td>• Retirement of high-emitting gas plants</td>
</tr>
<tr>
<td>2. Increased use of existing natural gas plants</td>
<td>• Increase dispatch of NGCC</td>
</tr>
<tr>
<td></td>
<td>• More emissions-efficient regional dispatch</td>
</tr>
<tr>
<td>3. Increased use of low-carbon and zero-carbon generation</td>
<td>• New renewables (including closed-loop biomass)</td>
</tr>
<tr>
<td></td>
<td>• Preserve existing nuclear</td>
</tr>
<tr>
<td></td>
<td>• New nuclear</td>
</tr>
<tr>
<td></td>
<td>• New Cogeneration</td>
</tr>
<tr>
<td></td>
<td>• New NGCC</td>
</tr>
<tr>
<td></td>
<td>• New coal with CCS</td>
</tr>
<tr>
<td>Other compliance measures beyond source-based “building blocks”</td>
<td>• Increased customer energy efficiency (”conservation programs”)</td>
</tr>
<tr>
<td></td>
<td>• Transmission efficiency improvements</td>
</tr>
</tbody>
</table>
National Average Electricity Sector Emissions Rate Reductions (lbs/MWh) under Clean Power Plan

- EPA Average Coal CO₂ Rate
- EPA Average Gas CC CO₂ Rate

2030 EGU Emissions = Standard
2030 CO₂ from Fossil Units
2030 MWh from Fossil EGUs + New & "At Risk" Nuclear + Existing & New Renewables + New Energy Efficiency

- 39% CO₂ "Rate" Reduction
Clean Power Plan Emissions Standards by State:
State standards vary considerably relative to current fossil emissions levels due to modeled emission reduction opportunities.
EPA’s Calculated Marginal Cost of CO₂ Control Indicates Gains Are Available from Regional Cooperation

Prices In 2030 with No Cooperation ($2011/ton)

- Disparity of prices suggests large benefits from coordination
- National average cost of compliance is $15 per ton without interstate cooperation
- EPA’s modeled rate-based cooperation reduces the average compliance cost to $13/ton
- Mass-based allowance trading would likely reduce the compliance cost even further
Independent State GHG Policies
States with Mandatory GHG Reduction Targets Set by Legislation or Governor’s Executive Order

Source: WRI
States with GHG Reduction Targets Set by Legislation

Source: WRI
States with Active GHG Cap-and-Trade Programs

California’s AB 32 Program

Regional Greenhouse Gas Initiative (RGGI)

Source: EPA’s “Survey of Existing State Policies and Programs”
Renewable Portfolio Standard Policies

29 States + Washington DC + 3 territories have a Renewable Portfolio Standard (8 states and 1 territories have renewable portfolio goals)

Extra credit for solar or customer-sited renewables
† Includes non-renewable alternative resources
States with Energy Efficiency Resource Standards (and Goals)

www.dsireusa.org / March 2015

26 States Have Statewide Energy Efficiency Resource Standards (or Goals)

States with an Energy Efficiency Resource Standard

States with an Energy Efficiency Resource Goal

No State Standard or Goal
Leading from the States: California’s Climate Change Policies
California’s Global Warming Solutions Act of 2006 (Assembly Bill (AB) 32)

• California is the 12th largest emitter of GHGs worldwide.

• **Beginning in 2012**, the California Air Resources Board was required to develop regulations and market mechanisms to reduce GHG emissions to 1990 levels by 2020—a **25% reduction below forecast BAU in 2020.**

• In **2013**, the **cap-and-trade program** became effective for electric utilities and large industrial facilities.

• In **October 2013**, California and the **Province of Quebec** linked their cap-and-trade programs making compliance allowances interchangeable starting on January 1, 2014.

• In **2015**, the **cap-and-trade program** began being applied to **fuel distributors** (e.g., gasoline, natural gas, etc.)
California’s Low-Carbon Fuel Standard

• Governor Schwarzenegger issued Executive Order S-1-07 in 2007 creating the world’s first low-carbon fuel standard.

• The LCFS call for a reduction of at least 10% in the carbon intensity of transportation fuels by 2020.

• The LCFS is based on all “well-to-wheels” and “seeds-to-wheels” GHG emissions due to production, distribution and use of transportation fuels.

• The LCFS is a “technology-forcing” policy intended to:
 1. Reduce CA’s dependence on petroleum;
 2. Create a market for clean transportation technology;
 3. Stimulate the production and use of alternative, low-carbon fuels
The Basic Goal of AB 32: Roll California GHG Emissions back to 1990 Levels by 2020

Source: Historical 2000 to 2011 GHG Emissions Data and Emissions Forecast from California Air Resources Board
California’s Plan Is Comprehensive

1. Electric Power
2. Transportation
3. Commercial and Residential (especially building and appliance efficiencies)
4. Industrial Facilities
5. Recycling and waste
6. High Global warming Potential Gases (e.g. refrigerants)
7. Agriculture
8. Forests and other natural lands
Phasing-in of Sectors Covered by Cap-and-trade

2013: 162.5 MMT
- Industrial
- Electricity

2015: 394.5 MMT

2020: 334.2 MMT
- Industrial
- Electricity
- Transportation Fuels
- Natural Gas

CP1

CP2 and CP3
Seven Major Complementary Policies for Achieving California’s GHG Reduction Goals

Cap-and trade:
- 90% of the attention, but only 20% of the reductions
- Hopefully will drive $billions in investments, and serve as a model and coordination device for national and international collaboration and participation
Seven Major Complementary Policies for Achieving California’s GHG Reduction Goals

- **Low Carbon Fuel Standard**
 - Reduce carbon intensity of transportation fuels by 10% (below 2010) by 2020

- **Energy Efficiency (EE)**
 - Utility programs, state buildings and standards

- **Renewable Portfolio Standards (RPS)**
 - Procure 33% from eligible renewables by 2020

- **Advanced Clean Cars**
 - Mandate auto manufacturers to sell PEVs, and Fuel Cell vehicles by 2020

- **Other Measures**
 - Million solar roofs, high speed rail, regional targets

- **Measures in uncapped sectors**
 - Refrigerant tracking, sustainable forests, landfill methane control measure

- **Cap & Trade**
 - Backstop to ensure reductions are achieved regardless of the performance at other program measures.

![Graph showing distribution of MMT among different policies](image-url)
California’s Climate Change Policies: Some Future Challenges
California Continues to Push Aggressive Policy Goals

• On January 5, 2015, CA’s Governor Gerry Brown proposed increasing CA’s RPS to 50% by 2030.
 – CA’s current RPS is 33% by 2020

• On April 29, 2015, Brown issued an Executive Order setting a goal of reducing all GHG emissions by 40% below 1990 levels by 2030.

• On June 3, 2015, the CA Senate passed SB 32 (Pavley) setting a goal of 40% reductions below 1990 levels by 2030 and 80% reductions by 2050.
 – The 80% by 2050 goal had originally been set by Schwarzenegger Executive Order 5-3-05 in 2005

• Pending CA Senate Bill 350 (De Leon) would mandate by 2030 a 50% reduction in petroleum use, a 50% RPS, and a 50% increase in building energy efficiencies.
Achieving an 80% Reduction in GHGs by 2050 Will Require Huge Contributions from All Sectors but Transportation and Electricity are Especially Important
E3: Decarbonizing California’s Economy Depends on Four Critical Energy Transitions

1. Efficiency and Conservation

2. Fuel Switching

3. Decarbonize electricity

4. Decarbonize fuels (liquid & gas)

E3: Electricity Generation Increases Significantly Due to Fuel Switching in Buildings, Industry, and Transportation

- Low-carbon electricity is primarily provided by solar and wind resources, natural gas generation continues to provide energy when solar and wind are not available.
- Electric loads increase significantly between 2030 – 2050 due to fuel switching in buildings, industry & transportation.

E3: Electricity is Decarbonized Though Huge Additions of Renewables

- Straight line scenario targets 50% renewables in 2030
 - 75 – 86% renewables in 2050, except for CCS scenario
- Renewable capacity needs increase dramatically post-2030 due to higher electric loads and higher renewable goals

Integration solutions needed:
- Hydro & thermal generation
- Renewable diversity, regional coordination, renewable curtailment
- Increased reliance on flexible loads, especially flexible fuel production (grid electrolysis) in scenarios with fuel cell vehicles
- 4-8hr stationary storage is needed in high BEV scenario due to no flexible grid electrolysis

Decarbonizing Fuels and Fuel Switching Involve Two Basic Complications in California

Insufficient Biofuels:
- Not enough biofuels available to decarbonize both the transportation and building & industry sectors.

Renewable Electricity “Overgeneration”:
- Substantial increases in renewable power generation will create system “overgeneration” problems that can be dealt with through either:
 - Long-term storage (likely batteries)
 - Producing H$_2$ synfuel by hydrolysis
Basic Decarbonization Choices

- **Buildings and Industry**
 - Electrification
 - Biogas
 - Biofuel

- **Transportation**
 - Electrification
 - Batteries
 - H₂ Synfuel

Note: Not enough biomass available for both Biogas and Biofuel.
Strategy 1: Electrify Buildings and Use Biofuels for Transportation

- **Buildings and Industry**
 - Electrification
 - Biogas
 - Biofuel

- **Transportation**
 - Electrification
 - Batteries
 - H₂ Synfuel

Not enough biomass available for both.
Strategy 2: Use Available Biomass for Biogas to Buildings, and Electrify Transportation

Buildings and Industry
- Electrification
 - Biogas
 - Biofuel

Transportation
- Electrification
 - Batteries
 - H₂ Synfuel

Not enough biomass available for both.
Strategy 2A: Need Substantial Amounts of System Electricity Storage with BEVs

- Buildings and Industry
 - Electrification
 - Biogas
 - Biofuel
 - Not enough biomass available for both.

- Transportation
 - Electrification
 - Batteries
 - H₂ Synfuel
Strategy 2B: Little or No System Storage Needed under H$_2$ Hydrolysis and Synfuels

- Electrification
- Biogas
- Biofuel
- Batteries
- H$_2$ Synfuel

Buildings and Industry

Transportation

Not enough biomass available for both.
Thank You

Any Questions?